Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555649

ABSTRACT

In the paper, the method of obtaining the potato starch nanocomposites plasticized with a deep eutectic solvent is described. The deep eutectic solvent based on choline chloride and malic acid (CM, molar ratio 1:1) was used as the plasticizer. The effect of the sodium and calcium montmorillonite (MMTNa, MMTCa respectively) addition on the properties of potato starch films was investigated. The thermal, mechanical, and barrier properties were determined. Moreover, a moisture absorption test was performed. The starch gelatinization temperature increased in the presence of montmorillonite. The values of glass transition determined by DMTA depended on the nanofiller type. For the systems containing MMTCa, they generally decreased with its content (although still lower than reference samples). The obtained nanocomposites showed improved mechanical and barrier properties. The highest values of tensile strength and Young's modulus were noted for the system containing 1% MMTNa. The XRD revealed that only the films with MMTNa exhibited intercalation. The homogeneity of the samples decreased with increasing nanofiller concentration. This was probably due to the occurrence of choline chloride-montmorillonite interactions, which were more favored than clay-starch interactions.


Subject(s)
Bentonite , Solanum tuberosum , Bentonite/chemistry , Solvents , Solanum tuberosum/chemistry , Deep Eutectic Solvents , Starch/chemistry , Tensile Strength
2.
Polymers (Basel) ; 14(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054627

ABSTRACT

In this review, the application of deep eutectic solvents (DESs) as starch solvents, plasticizers and for other treatment has been described. Starch, as one of the most abundant biopolymers, is considered for forming new biodegradable materials. This new approach, referring to applying deep eutectic solvents for dissolving starch, its plasticization and other modifications, was presented. A DES could be a good alternative for common starch plasticizers (e.g., glycerol, urea) as well as recently considered ionic liquids. The high variety of DES component combinations makes it possible to obtain materials with the properties specific for given applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...