Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; (17): 2290-2, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19377662

ABSTRACT

Cryo-electron tomography of raspberry-like multicompartment micelles formed by a linear ABC triblock copolymer in water revealed that the fluorocarbon domains may be dispersed all over the hydrocarbon core.

2.
Langmuir ; 25(13): 7594-601, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19320429

ABSTRACT

Linear amphiphilic diblock and ternary triblock copolymers were synthesized by the RAFT method in two successive steps using a poly(ethylene oxide) (PEO) macrochain transfer agent, butyl or 2-ethylhexyl acrylate, and 1H,1H,2H,2H-perfluorodecyl acrylate. The diblock and the triblock copolymers, which consist of a hydrophilic, a lipophilic, and a short fluorophilic block, self-assemble in water into spherical micellar aggregates. Imaging by cryogenic transmission electron microscopy (cryo-TEM) revealed that the micellar cores of the aggregates made from these "triphilic" copolymers can undergo local phase separation to form a unique ultrastructure. In these multicompartment micelles, it appears that extended nonspherical domains, presumably made of nanocrystallites of the fluorocarbon block, are embedded in the hydrocarbon matrix forming the spherical micellar core. This novel internal structure of a micellar core is attributed to the mutual incompatibility of the fluorocarbon and hydrocarbon side chains in combination with the tendency of the used fluorocarbon acrylate monomer to undergo side-chain crystallization.

3.
Langmuir ; 23(1): 84-93, 2007 Jan 02.
Article in English | MEDLINE | ID: mdl-17190489

ABSTRACT

Nonionic water-soluble poly(acrylamide)s and poly(acrylate)s were synthesized by RAFT and ATRP methods. Similar to the synthesized poly(N-isopropylacrylamide) and poly(N-acryloylpyrrolidine), aqueous solutions of statistical acrylate copolymers bearing two different oligo(ethylene oxide) side chains showed a sharp clouding transition upon heating beyond characteristic temperatures. The temperature of the cloud point can be easily fine tuned by the copolymer composition. As for poly(N-isopropylacrylamide) and poly(N-acryloylpyrrolidine), the cloud-point temperatures of these statistical copolymers are rather insensitive to changes in the molar mass or the NaCl content of the solutions. Also, ternary triblock copolymers containing one permanently hydrophilic block and two different thermoresponsive blocks were synthesized, varying the block sequence systematically. Their aggregation in aqueous solution was followed by turbidimetry and dynamic light scattering. Depending on the heating process and the triblock sequence, micellar aggregates of 40 to 600 nm size were found. The thermally induced aggregation behavior depends sensitively on the block sequence but is also subject to major kinetic effects. For certain block sequences, a thermally induced two-step association is observed when heating beyond the first and second cloud points of the thermoresponsive blocks. However, the thermal-transition temperatures of the block polymers can differ from the thermal-transition temperatures of the individual homopolymers. This may be caused by end-group effects but also by mutual interactions of the different blocks in solution, as physical mixtures of the homopolymers exhibit deviations from a purely additive thermal behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...