Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Liposome Res ; : 1-16, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988074

ABSTRACT

Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.

2.
Biomedicines ; 9(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34356878

ABSTRACT

Autologous platelet-rich fibrin (PRF) is derived from the blood and its use in the bone tissue engineering has emerged as an effective strategy for novel drug and growth factor delivery systems. Studies have approved that combined therapy with PRF ensures higher biological outcomes, but patients still undergo additional treatment with antibiotic drugs before, during, and even after the implantation of biomaterials with PRF. These systematically used drugs spread throughout the blood and lead not only to positive effects but may also induce adverse side effects on healthy tissues. Vancomycin hydrochloride (VANKA) is used to treat severe Staphylococcal infections but its absorption in the target tissue after oral administration is low; therefore, in this study, we have developed and analyzed two kinds of VANKA carriers-liposomes and microparticles in 3D PRF matrices. The adjustment, characterization, and analysis of VANKA carriers in 3D PRF scaffolds is carried out in terms of encapsulation efficiency, drug release kinetics and antibacterial activity; furthermore, we have studied the micro- and macrostructure of the scaffolds with microtomography.

SELECTION OF CITATIONS
SEARCH DETAIL
...