Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18869, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914805

ABSTRACT

Impacts of sea level rise will last for centuries; therefore, flood risk modeling must transition from identifying risky locations to assessing how populations can best cope. We present the first spatially interactive (i.e., what happens at one location affects another) land change model (FUTURES 3.0) that can probabilistically predict urban growth while simulating human migration and other responses to flooding, essentially depicting the geography of impact and response. Accounting for human migration reduced total amounts of projected developed land exposed to flooding by 2050 by 5%-24%, depending on flood hazard zone (50%-0.2% annual probability). We simulated various "what-if" scenarios and found managed retreat to be the only intervention with predicted exposure below baseline conditions. In the business-as-usual scenario, existing and future development must be either protected or abandoned to cope with future flooding. Our open framework can be applied to different regions and advances local to regional-scale efforts to evaluate potential risks and tradeoffs.

2.
Commun Biol ; 5(1): 558, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676315

ABSTRACT

Models that are both spatially and temporally dynamic are needed to forecast where and when non-native pests and pathogens are likely to spread, to provide advance information for natural resource managers. The potential US range of the invasive spotted lanternfly (SLF, Lycorma delicatula) has been modeled, but until now, when it could reach the West Coast's multi-billion-dollar fruit industry has been unknown. We used process-based modeling to forecast the spread of SLF assuming no treatments to control populations occur. We found that SLF has a low probability of first reaching the grape-producing counties of California by 2027 and a high probability by 2033. Our study demonstrates the importance of spatio-temporal modeling for predicting the spread of invasive species to serve as an early alert for growers and other decision makers to prepare for impending risks of SLF invasion. It also provides a baseline for comparing future control options.


Subject(s)
Hemiptera , Animals , California , Introduced Species , Natural Resources
3.
Front Ecol Environ ; 19(7): 411-418, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34588928

ABSTRACT

Ecological forecasting has vast potential to support environmental decision making with repeated, testable predictions across management-relevant timescales and locations. Yet resource managers rarely use co-designed forecasting systems or embed them in decision making. Although prediction of planned management outcomes is particularly important for biological invasions to optimize when and where resources should be allocated, spatial-temporal models of spread typically have not been openly shared, iteratively updated, or interactive to facilitate exploration of management actions. We describe a species-agnostic, open-source framework - called the Pest or Pathogen Spread (PoPS) Forecasting Platform - for co-designing near-term iterative forecasts of biological invasions. Two case studies are presented to demonstrate that iterative calibration yields higher forecast skill than using only the earliest-available data to predict future spread. The PoPS framework is a primary example of an ecological forecasting system that has been both scientifically improved and optimized for real-world decision making through sustained participation and use by management stakeholders.

4.
J Exp Biol ; 219(Pt 17): 2716-25, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27582563

ABSTRACT

Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges.


Subject(s)
Antioxidants/pharmacology , Diet , Flight, Animal/drug effects , Food , Ovum/metabolism , Physical Conditioning, Animal , Animals , Egg Yolk/drug effects , Egg Yolk/metabolism , Female , Finches/blood , Finches/physiology , Linear Models , Liver/drug effects , Liver/enzymology , Lutein/metabolism , Ovum/drug effects , Oxidation-Reduction/drug effects , Vitamin E/analysis
5.
Ecol Evol ; 5(15): 3198-209, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26355277

ABSTRACT

Managing oxidative stress is an important physiological function for all aerobic organisms, particularly during periods of prolonged high metabolic activity, such as long-distance migration across ecological barriers. However, no previous study has investigated the oxidative status of birds at different stages of migration and whether that oxidative status depends on the condition of the birds. In this study, we compared (1) energy stores and circulating oxidative status measures in (a) two species of Neotropical migrants with differing migration strategies that were sampled at an autumn stopover site before an ecological barrier; and (b) a species of trans-Saharan migrant sampled at a spring stopover site after crossing an ecological barrier; and (2) circulating oxidative measures and indicators of fat metabolism in a trans-Saharan migrant after stopovers of varying duration (0-8 nights), based on recapture records. We found fat stores to be positively correlated with circulating antioxidant capacity in Blackpoll Warblers and Red-eyed Vireos preparing for fall migration on Block Island, USA, but uncorrelated in Garden Warblers on the island of Ponza, Italy, after a spring crossing of the Sahara Desert and Mediterranean Sea. In all circumstances, fat stores were positively correlated with circulating lipid oxidation levels. Among Garden Warblers on the island of Ponza, fat anabolism increased with stopover duration while oxidative damage levels decreased. Our study provides evidence that birds build antioxidant capacity as they build fat stores at stopover sites before long flights, but does not support the idea that antioxidant stores remain elevated in birds with high fuel levels after an ecological barrier. Our results further suggest that lipid oxidation may be an inescapable hazard of using fats as the primary fuel for flight. Yet, we also show that birds on stopover are capable of recovering from the oxidative damage they have accrued during migration, as lipid oxidation levels decrease with time on stopover. Thus, the physiological strategy of migrating songbirds may be to build prophylactic antioxidant capacity in concert with fuel stores at stopover sites before a long-distance flight, and then repair oxidative damage while refueling at stopover sites after long-distance flight.

SELECTION OF CITATIONS
SEARCH DETAIL
...