Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Molecules ; 29(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276610

ABSTRACT

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

2.
Molecules ; 28(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36903620

ABSTRACT

Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.

3.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984038

ABSTRACT

The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is formed) have a ß-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape of hexagonal prisms. The type and content of doping REE significantly effect on the particle size. Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum attributed to 4G5/2→6HJ transitions (J = 5/2-11/2) of Sm3+ ion. Increasing the samarium (III) content results in concentration quenching by dipole-dipole interactions, the optimum Sm3+concentration is found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in emission intensity. This effect was explained from the Sm3+ local symmetry point of view.

4.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679606

ABSTRACT

Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active corrosion of structural materials takes place; upon increase in oxygen content, slag accumulates due to the formation of lead oxide. The generally accepted method of measuring the oxygen content in LBE is currently potentiometry. The sensors for measuring oxygen activity (electrochemical oxygen sensors) are galvanic cells with two electrodes (lead-bismuth coolant serves as working electrode) separated by a solid electrolyte. Control of corrosion and slag accumulation processes in circuits exploring LBE as a coolant is also based on data obtained by electrochemical oxygen sensors. The disadvantages of this approach are the low efficiency and low sensitivity of control. The alternative, Impedance Spectroscopy (EIS) Sensors, are proposed for Real-Time Corrosion Monitoring in LBE system. Currently their applicability in static LBE at temperatures up to 600 °C is shown.


Subject(s)
Alloys , Bismuth , Corrosion , Alloys/chemistry , Oxygen
5.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080009

ABSTRACT

Two series of ß-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.

6.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144501

ABSTRACT

A new series of luminescent heterometallic europium(III)-lutetium(III) terephthalate metal-organic frameworks, namely (EuxLu1-x)2bdc3·nH2O, was synthesized using a direct reaction in a water solution. At the Eu3+ concentration of 1-40 at %, the MOFs were formed as a binary mixture of the (EuxLu1-x)2bdc3 and (EuxLu1-x)2bdc3·4H2O crystalline phases, where the Ln2bdc3·4H2O crystalline phase was enriched by europium(III) ions. At an Eu3+ concentration of more than 40 at %, only one crystalline phase was formed: (EuxLu1-x)2bdc3·4H2O. All MOFs containing Eu3+ exhibited sensitization of bright Eu3+-centered luminescence upon the 280 nm excitation into a 1ππ* excited state of the terephthalate ion. The fine structure of the emission spectra of Eu3+ 5D0-7FJ (J = 0-4) significantly depended on the Eu3+ concentration. The luminescence quantum yield of Eu3+ was significantly larger for Eu-Lu terephthalates containing a low concentration of Eu3+ due to the absence of Eu-Eu energy migration and the presence of the Ln2bdc3 crystalline phase with a significantly smaller nonradiative decay rate compared to the Ln2bdc3·4H2O.

7.
Materials (Basel) ; 15(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744319

ABSTRACT

This paper discusses the processes of the long-lived 137Cs and 60Co immobilization on titanium surfaces in simulated light water reactor primary circuit environments. This study is prompted by numerous problems in both the maintenance of equipment during reactor operation and the dismantling of the reactor after the completion of the operation, which is associated with contamination of working surfaces with long-lived radionuclides. The composition of the oxide films formed on the surface of commercial titanium alloy ПT-3B has been studied with specimens prepared in autoclave test conditions and surface samples from the pipeline sections to which the primary coolant was applied. These films on the coolant pipeline surface consist of a titanium dioxide layer tightly adhered to the pipeline metal surface and weakly fixed deposits-crystallites comprised of titanium oxides and other corrosion products (oxides and hydrated oxides of iron, nickel, chromium etc.). The radionuclide composition of the samples was studied by gamma-spectrometry. It is shown that the mechanism of titanium-surface contamination with 137Cs is by physisorption, contamination level increases upon the presence of dispersed particles. For 60Co, both sorption and deposition onto surfaces are observed.

8.
Biomedicines ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35203671

ABSTRACT

Relying on a recently suggested protocol that furnishes convenient access to variously substituted 2-pyridyl ureas, twelve hitherto unknown Cu(II) complexes have been synthesized in the present work and their structures were evaluated by elemental analysis, HRMS, IR spectroscopy, and X-ray diffraction study. Two structural motifs ([Cu(L)2Cl]+[Cl]- or (Cu(L)2Cl2) depending on the substitution pattern on the 2-pyridine fragment were revealed. In addition, antiproliferative action of the obtained compounds have been investigated against lung cancer cell lines (A549, NCI-H460, NCI-H1975), and healthy WI-26 VA4 cells were used to monitor non-specific cytotoxicity. Two nitro-group substituted complexes Cu(U3)2Cl2 (IC50 = 39.6 ± 4.5 µM) and Cu(U11)2Cl2 (IC50 = 33.4 ± 3.8 µM) demonstrate enhanced activity against the drug resistant NCI-H1975 cells with moderate selectivity toward normal WI-26 VA4 cells. The antiproliferative mechanism of cell death underlying the growth inhibitory effect of the synthesized complexes was studied via additional experiments, including the cell cycle analysis and the apoptosis induction test. Reassuringly, certain 2-pyridyl urea-based Cu(II) complexes exerted cell line-specific antiproliferative effect which renders them valuable starting points for further unveiling the anticancer potential of this class of coordination compounds.

9.
Nanomaterials (Basel) ; 11(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34578764

ABSTRACT

The luminescent coarse-, micro- and nanocrystalline europium(III) terephthalate tetrahydrate (Eu2bdc3·4H2O) metal-organic frameworks were synthesized by the ultrasound-assisted wet-chemical method. Electron micrographs show that the europium(III) terephthalate microparticles are 7 µm long leaf-like plates. According to the dynamic light scattering technique, the average size of the Eu2bdc3·4H2O nanoparticles is equal to about 8 ± 2 nm. Thereby, the reported Eu2bdc3·4H2O nanoparticles are the smallest nanosized rare-earth-based MOF crystals, to the best of our knowledge. The synthesized materials demonstrate red emission due to the 5D0-7FJ transitions of Eu3+ upon 250 nm excitation into 1ππ* state of the terephthalate ion. Size reduction results in broadened emission bands, an increase in the non-radiative rate constants and a decrease in both the quantum efficiency of the 5D0 level and Eu3+ and the luminescence quantum yields. Cu2+, Cr3+, and Fe3+ ions efficiently and selectively quench the luminescence of nanocrystalline europium(III) terephthalate, which makes it a prospective material for luminescent probes to monitor these ions in waste and drinking water.

10.
J Phys Chem B ; 125(26): 7213-7221, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34170695

ABSTRACT

Ultrafast excited-state dynamics of CuBr3- complex was studied in acetonitrile and dichloromethane solutions using femtosecond transient absorption spectroscopy with 18 fs temporal resolution and quantum-chemical DFT calculations. Upon 640 nm excitation, the CuBr3- complex is promoted to the ligand-to-metal charge transfer (LMCT) state, which then shortly undergoes internal conversion into the vibrationally hot ligand field (LF) excited state with time constants of 30 and 40 fs in acetonitrile and dichloromethane, respectively. The LF state nonradiatively relaxes into the ground state in 2.6 and 7.3 ps in acetonitrile and dichloromethane, respectively. Internal conversion of the LF state is accompanied by vibrational relaxation that occurs on the same time scale. Based on the analysis of coherent oscillations and quantum-chemical calculations, the predominant forms of the CuBr3- complex in acetonitrile and dichloromethane solutions were revealed. In acetonitrile, the CuBr3- complex exists as [CuBr3(CH3CN)2]-, whereas three forms of this complex, [CuBr3CH2Cl2]-, [CuBr3(CH2Cl2)2]-, and [CuBr3(CH2Cl2)3]-, are present in equilibrium in dichloromethane.


Subject(s)
Vibration , Ligands , Spectrum Analysis
11.
J Phys Chem B ; 124(18): 3724-3733, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32283018

ABSTRACT

The ultrafast photochemistry of the [Cr(NCS)6]3- complex upon excitation to the 4T2 ligand-field (LF) state was studied in dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) in a wide temporal range (100 fs to 9 ms) by a combination of femtosecond and nanosecond transient absorption spectroscopy techniques and supported by quantum-chemical DFT/TD-DFT calculations. The initially excited 4T2 state undergoes intersystem crossing to the vibrationally hot 2E state with time constants of 1.1 ± 0.2 and 1.8 ± 0.1 ps in DMSO and DMF, respectively. Vibrational relaxation occurs in the same time scale and takes 1-5 ps. A major part of the [Cr(NCS)6]3- complex in the 2E state undergoes intersystem crossing to the ground state with time constants of 65 ± 5 and 85 ± 5 ns in DMSO and DMF, respectively. A minor part of electronically excited [Cr(NCS)6]3- undergoes irreversible photochemical decomposition. In DMSO, the photolysis of the [Cr(NCS)6]3- complex results in single or double isothiocyanate ion release followed by the coordination of the solvent molecules with a time constant of 1 ± 0.2 ms.


Subject(s)
Dimethyl Sulfoxide , Dimethylformamide , Electronics , Ligands , Photochemistry
12.
J Phys Chem B ; 122(46): 10558-10571, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30375871

ABSTRACT

Ultrafast excited-state dynamics of CuCl42- in acetonitrile is studied by femtosecond broadband transient absorption spectroscopy following excitation of the complex into all ligand-field (LF or d-d) states and into the two ligand-to-metal charge transfer (LMCT) states corresponding to the most intense steady-state absorption bands. The LF excited states are found to be nonreactive. The lowest-lying 2E LF excited state has a lifetime less than 150 fs, and the lifetimes of the second (2B1) and the third (2A1) LF excited states are 1 and 5 ps, respectively. All three LF states decay directly into the ground 2B2 state. Such significant differences in excited-state decay time constants were rationalized computationally through time-dependent density functional theory (TD-DFT) computations. TD-DFT mapping of the relaxation pathway along the symmetric Cl-Cu-Cl umbrella bending vibration gives evidence for a conical intersection between the 2E excited state and the ground 2B2 state. The LMCT states decay within 200 fs with the primary deactivation mode consistent to be Cu-Cl stretch. A fraction of the CuCl42- complexes excited into the LMCT states undergoes ionic dissociation to form products that survive longer than 1 ns. The remaining fraction undergoes internal conversion, which can be viewed as back electron transfer, populating the lower vibrationally hot LF states. The LF states populated from the LMCT states exhibit the same lifetimes as the Franck-Condon LF states and likewise decay directly into the ground state.

13.
J Phys Chem B ; 121(17): 4562-4568, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28384409

ABSTRACT

Nonradiative relaxation dynamics of CuCl42- complexes photoexcited into the highest-energy ligand-field electronic state (2A1) is studied in acetonitrile, dichloromethane, and chloroform solvents, as well as in acetonitrile-water and in acetonitrile-deuterated water mixtures. Due to ultrafast internal conversion, this excited state directly converts to the electronic ground state in dichloromethane and chloroform. The nonradiative relaxation constant is similar in anhydrous acetonitrile. Addition of water to acetonitrile solutions efficiently quenches the excited ligand-field 2A1 state. The quenching is proposed to be due to the diffusion-controlled formation of an electronically excited pentacoordinated [CuCl4H2O]2- encounter complex or a short-lived exciplex of similar structure, in which the electronic excitation energy transfers into the O-H stretch of the coordinated H2O molecule. This is followed by the dissociation of the pentacoordinated species, resulting in the reformation of the ground-state CuCl42- and free H2O molecules.

14.
Talanta ; 167: 201-207, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28340711

ABSTRACT

The synthesis of conductive gold and copper-gold microstructures with high developed surface based on the method of laser-induced metal deposition from solution was developed. The topology and crystallization phase of these structures were observed by means of scanning electron microscopy and X-ray diffraction, respectively. The electrochemical properties of the synthesized materials were investigated using cyclic voltamperometry and amperometry. According to the obtained results, it was found out that copper-gold microstructures demonstrate a linear dependence of Faraday current vs. concentration from 0.025 to 5µM for D-glucose and from 0.025 to 10µM for hydrogen peroxide. In turn, gold deposit exhibits a linear dependence of Faraday current vs. concentration from 0.025 to 50µM for D-glucose and from 0.025 to 1µM for hydrogen peroxide. Moreover, the synthesized materials reveal low detection limits (0.025µM) with respect to the aforementioned analytes, which is quite promising for their potential application in design and fabrication of new non-enzymatic biosensors.

15.
J Phys Chem A ; 120(11): 1833-44, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26901567

ABSTRACT

Photochemistry of copper(II) monochlorocomplexes in methanol and acetonitrile solutions is studied by UV-pump/broadband deep-UV-to-near-IR probe femtosecond transient absorption spectroscopy. Upon 255 and 266 nm excitation, the complexes in acetonitrile and methanol, respectively, are promoted to the excited ligand-to-metal charge transfer (LMCT) state, which has a short (sub-250 fs) lifetime. From the LMCT state, the complexes decay via internal conversion to lower-lying ligand field (LF) d-d excited states or the vibrationally hot ground electronic state. A minor fraction of the excited complexes relaxes to the LF electronic excited states, which are relatively long-lived with lifetimes >1 ns. Also, in methanol solutions, about 3% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming copper(I) solvatocomplexes and chlorine atoms, which then further react forming long-lived photoproducts. In acetonitrile, about 50% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming radical and ionic products in a ratio of 3:2. Another minor process observed following excitation only in methanol solutions is the re-equilibration between several forms of the copper(II) ground-state complexes present in solutions. This re-equilibration occurs on a time scale from sub-nanoseconds to nanoseconds.

16.
J Phys Chem B ; 119(28): 8754-63, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26079181

ABSTRACT

Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 µs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled.


Subject(s)
Copper/chemistry , Spectrophotometry, Ultraviolet/methods
17.
Dalton Trans ; 42(43): 15275-9, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24042456

ABSTRACT

Complexation between hexavalent neptunium and nitrate was studied in aqueous nitric acid solution using optical absorption, vibrational and X-ray absorption spectroscopies. Distributions of aqueous [NpO2](2+), [NpO2(NO3)](+) and [NpO2(NO3)2] species were obtained as a function of nitric acid concentration between 0 and 14 M. The crystal structure of [NpO2(NO3)2(H2O)2]·H2O was determined.

18.
Dalton Trans ; 40(5): 1111-8, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21165499

ABSTRACT

The two dimethyl sulfoxide solvated rhodium(III) compounds, [Rh(dmso-κO)(5)(dmso-κS)](CF(3)SO(3))(3) (1 & 1* at 298 K and 100 K, respectively) and [Rh(dmso-κO)(3)(dmso-κS)(2)Cl](CF(3)SO(3))(2) (2), crystallize with orthorhombic unit cells in the space group Pna2(1) (No. 33), Z = 4. In the [Rh(dmso)(6)](3+) complex with slightly distorted octahedral coordination geometry, the Rh-O bond distance is significantly longer with O trans to S, 2.143(6) Å (1) and 2.100(6) Å (1*), than the mean Rh-O bond distance with O trans to O, 2.019 Å (1) and 2.043 Å (1*). In the [RhCl(dmso)(5)](3+) complex, the mean Rh-O bond distance with O trans to S, 2.083 Å, is slightly longer than that for O trans to Cl, 2.067(4) Å, which is consistent with the trans influence DMSO-κS > Cl > DMSO-κO of the opposite ligands. Raman and IR absorption spectra were recorded and analyzed and a complete assignment of the vibrational bands was achieved with support by force field calculations. An increase in the Rh-O stretching vibrational frequency corresponded to a decreasing trans-influence from the opposite ligand. The Rh-O force constants obtained were correlated with the Rh-O bond lengths, also including previously obtained values for other M(dmso)(6)(3+) complexes with trivalent metal ions. An almost linear correlation was obtained for the MO stretching force constants vs. the reciprocal square of the MO bond lengths. The results show that the metal ion-oxygen bonding of dimethyl sulfoxide ligands is electrostatically dominated in those complexes and that the stretching force constants provide a useful measure of the relative trans-influence of the opposite ligands in hexa-coordinated Rh(III)-complexes.

19.
Dalton Trans ; (8): 1328-38, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-19462654

ABSTRACT

The strongly hydrogen bonded species (CH3)2SO...H3O+ formed in concentrated hydrochloric acid displays a new low energy feature in its sulfur K-edge X-ray absorption near edge structure (XANES) spectrum. Density Functional Theory-Transition Potential (DFT-TP) calculations reveal that the strong hydrogen bonding decreases the energy of the transition S(1s) --> LUMO, which has antibonding sigma*(S-O) character, with about 0.8 eV. Normal coordinate force field analyses of the vibrational spectra show that the SO stretching force constant decreases from 4.72 N cm(-1) in neat liquid dimethyl sulfoxide to 3.73 N cm(-1) for the hydrogen bonded (CH3)2SO...H3O+ species. The effects of sulfur coordination on the ambidentate dimethyl sulfoxide molecule were investigated for the trans-Pd((CH3)2SO)2Cl2, trans-Pd((CD3)2SO)2Cl2 and cis-Pt((CH3)2SO)2Cl2 complexes with square planar coordination of the chlorine and sulfur atoms. The XANES spectra again showed shifts toward low energy for the transition S(1 s) --> LUMO, now with antibonding sigma*(M-Cl, M-S) character, with a larger shift for M = Pt than Pd. DFT-TP calculations indicated that the differences between the XANES spectra of the geometrical cis and trans isomers of the M((CH3)2SO)2Cl2 complexes are expected to be too small to allow experimental distinction. The vibrational spectra of the palladium(II) and platinum(II) complexes were recorded and complete assignments of the fundamentals were achieved. Even though the M-S bond distances are quite similar the high covalency especially of the Pt-S bonds induces significant increases in the S-O stretching force constants, 6.79 and 7.18 N cm(-1), respectively.


Subject(s)
Dimethyl Sulfoxide/chemistry , Spectrum Analysis/methods , Sulfuric Acid Esters/chemistry , Hydrogen Bonding , Spectroscopy, Fourier Transform Infrared , Sulfur/chemistry , X-Rays
20.
Inorg Chem ; 46(20): 8332-48, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17784748

ABSTRACT

Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra have been recorded and the S(1s) electron excitations evaluated by means of density functional theory-transition potential (DFT-TP) calculations to provide insight into the coordination, bonding, and electronic structure. The XANES spectra for the various species in sulfur dioxide and aqueous sodium sulfite solutions show considerable differences at different pH values in the environmentally important sulfite(IV) system. In strongly acidic (pH < approximately 1) aqueous sulfite solution the XANES spectra confirm that the hydrated sulfur dioxide molecule, SO2(aq), dominates. The theoretical spectra are consistent with an OSO angle of approximately 119 degrees in gas phase and acetonitrile solution, while in aqueous solution hydrogen bonding reduces the angle to approximately 116 degrees . The hydration affects the XANES spectra also for the sulfite ion, SO32-. At intermediate pH ( approximately 4) the two coordination isomers, the sulfonate (HSO3-) and hydrogen sulfite (SO3H-) ions with the hydrogen atom coordinated to sulfur and oxygen, respectively, could be distinguished with the ratio HSO3-:SO3H- about 0.28:0.72 at 298 K. The relative amount of HSO3- increased with increasing temperature in the investigated range from 275 to 343 K. XANES spectra of sulfonate, methanesulfonate, trichloromethanesulfonate, and trifluoromethanesulfonate compounds, all with closely similar S-O bond distances in tetrahedral configuration around the sulfur atom, were interpreted by DFT-TP computations. The energy of their main electronic transition from the sulfur K-shell is about 2478 eV. The additional absorption features are similar when a hydrogen atom or an electron-donating methyl group is bonded to the -SO3 group. Significant changes occur for the electronegative trichloromethyl (Cl3C-) and trifluoromethyl (F3C-) groups, which strongly affect the distribution especially of the pi electrons around the sulfur atom. The S-D bond distance 1.38(2) A was obtained for the deuterated sulfonate (DSO3-) ion by Rietveld analysis of neutron powder diffraction data of CsDSO3. Raman and infrared absorption spectra of the CsHSO3, CsDSO3, H3CSO3Na, and Cl3CSO3Na.H2O compounds and Raman spectra of the sulfite solutions have been interpreted by normal coordinate calculations. The C-S stretching force constant for the trichloromethanesulfonate ion obtains an anomalously low value due to steric repulsion between the Cl3C- and -SO3 groups. The S-O stretching force constants were correlated with corresponding S-O bond distances for several oxosulfur species.


Subject(s)
Spectrum Analysis/methods , Sulfites/chemistry , Sulfonic Acids/chemistry , Sulfur Dioxide/chemistry , Solutions , Vibration , X-Ray Diffraction , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...