Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(20): 202501, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38039485

ABSTRACT

The changes in mean-squared charge radii of neutron-deficient gold nuclei have been determined using the in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN). From these new data, nuclear deformations are inferred, revealing a competition between deformed and spherical configurations. The isotopes ^{180,181,182}Au are observed to possess well-deformed ground states and, when moving to lighter masses, a sudden transition to near-spherical shapes is seen in the extremely neutron-deficient nuclides, ^{176,177,179}Au. A case of shape coexistence and shape staggering is identified in ^{178}Au which has a ground and isomeric state with different deformations. These new data reveal a pattern in ground-state deformation unique to the gold isotopes, whereby, when moving from the heavy to light masses, a plateau of well-deformed isotopes exists around the neutron midshell, flanked by near-spherical shapes in the heavier and lighter isotopes-a trend hitherto unseen elsewhere in the nuclear chart. The experimental charge radii are compared to those from Hartree-Fock-Bogoliubov calculations using the D1M Gogny interaction and configuration mixing between states of different deformation. The calculations are constrained by the known spins, parities, and magnetic moments of the ground states in gold nuclei and show a good agreement with the experimental results.

2.
J Chem Phys ; 154(22): 224303, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34241194

ABSTRACT

The YbOH triatomic molecule can be efficiently used to measure the electron electric dipole moment, which violates time-reversal (T) and spatial parity (P) symmetries of fundamental interactions [Kozyryev and Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. We study another mechanism of the T, P-violation in the YbOH molecule-the electron-electron interaction mediated by the low-mass axionlike particle. For this, we calculate the molecular constant that characterizes this interaction and use it to estimate the expected magnitude of the effect to be measured. It is shown that this molecular constant has the same order of magnitude as the corresponding molecular constant corresponding to the axion-mediated electron-nucleus interaction. According to our estimation, an experiment on YbOH will allow one to set updated laboratory constraints on the CP-violating electron-axion coupling constants.

3.
J Chem Phys ; 153(22): 224302, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317302

ABSTRACT

The time-reversal and spatial parity violating interaction of the nuclear magnetic quadrupole moment (MQM) of the 175Lu and 176Lu nuclei with electrons in the molecular cation LuOH+ is studied. The resulting effect is expressed in terms of fundamental parameters, such as quantum chromodynamics angle θ¯, quark electric dipole moment (EDM), and chromo-EDM. For this, we have estimated the magnetic quadrupole moments of 175Lu and 176Lu nuclei and calculated the molecular constant that characterizes the interaction of the MQM with electrons in the considered molecules. Additionally, we predict the hyperfine structure constants for the ground electronic state of LuOH+. In the molecular calculations, both the correlation and relativistic effects including the Gaunt interaction have been considered. According to the calculated expressions in terms of the fundamental constants, we conclude that LuOH+ can be a promising system to measure the nuclear MQM.

4.
J Chem Phys ; 152(4): 044301, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32007077

ABSTRACT

The influence of the nuclear magnetization distribution effects on the hyperfine structure of electronic states of thallium atom is studied within the relativistic coupled cluster theory. Relative significance of these effects is demonstrated for the first excited electronic state 6P3/2 of neutral Tl. Based on the obtained theoretical and available experimental data, the nuclear magnetic moments of short-lived 191Tlm and 193Tlm isotopes are predicted: µ191 = 3.79(2) µN and µ193 = 3.84(3) µN, respectively. Using theoretical and experimental data for the neutral Tl, the magnetic anomalies 205Δ203 for the 7S1/2 state of the neutral Tl atom and the 1S1/2 state of the hydrogen-like ion are also predicted.

5.
J Chem Phys ; 147(2): 021101, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28711056

ABSTRACT

The combined all-electron and two-step approach is applied to calculate the molecular parameters which are required to interpret the ongoing experiment to search for the effects of manifestation of the T,P-odd fundamental interactions in the HfF+ cation by Loh et al. [Science 342, 1220 (2013)] and Ni et al. [J. Mol. Spectrosc. 300, 12 (2014)]. The effective electric field that is required to interpret the experiment in terms of the electron electric dipole moment is found to be 22.5 GV/cm. In the work of Pospelov and Ritz [Phys. Rev. D 89, 056006 (2014)], it was shown that another source of the T,P-odd interaction, the scalar-pseudoscalar nucleus-electron interaction with the dimensionless strength constant kT,P can dominate over the direct contribution from the electron electric dipole moment within the standard model and some of its extensions. Therefore, for the comprehensive and correct interpretation of the HfF+ experiment, one should also know the molecular parameter WT,P, the value of which is reported here to be 20.1 kHz.

6.
J Chem Phys ; 145(5): 054115, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27497547

ABSTRACT

An experiment towards the search for the interaction of the Schiff moment (S) of the (207)Pb nuclei with electrons in PbTiO3 crystal which violates the time reversal (T) and space parity (P) symmetries was proposed by Mukhamedjanov and Sushkov [Phys. Rev. A 72, 034501 (2005)]. The interpretation of the experiment in terms of the Schiff moment requires knowledge of an electronic density gradient parameter (usually designated as X) on the Pb nucleus in the crystal, which is determined by the electronic structure of the crystal. Here we propose a theoretical approach to calculate the properties in solids which are directly sensitive to the changes of valence electron densities in atomic cores but not in the valence spatial regions (Mössbauer parameters, hyperfine structure (HFS) constants, parameters of T,P-odd Hamiltonians, etc. [L. V. Skripnikov and A. V. Titov, Phys. Rev. A 91, 042504 (2015)]). It involves constructing the crystalline orbitals via the linear combination of atomic orbitals and employs a two-step concept of calculating such properties that was earlier proposed by us for the case of heavy-atom molecules. The application of the method to the PbTiO3 crystal results in the energy shift, Δε=0.82×10(6)S((207)Pb)eaB (3)eV, due to the T,P-odd interactions. The value is compared to the corresponding parameter in diatomic molecules (TlF, RaO, PbO), which have been proposed and used in the past decades in the search for the nuclear Schiff moment. We also present the calculation of the electric field gradient at the Pb nucleus in PbTiO3 for the comparison with other solid-state electronic structure approaches.

7.
J Chem Phys ; 145(21): 214301, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-28799403

ABSTRACT

A precise theoretical study of the electronic structure of heavy atom diatomic molecules is of key importance to interpret the experiments in the search for violation of time-reversal (T) and spatial-parity (P) symmetries of fundamental interactions in terms of the electron electric dipole moment, eEDM, and dimensionless constant, kT,P, characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction. The ACME collaboration has recently improved limits on these quantities using a beam of ThO molecules in the electronic H3Δ1 state [J. Baron et al., Science 343, 269 (2014)]. We apply the combined direct relativistic 4-component and two-step relativistic pseudopotential/restoration approaches to a benchmark calculation of the effective electric field, Eeff, parameter of the T,P-odd pseudoscalar-scalar interaction, WT,P, and hyperfine structure constant in Δ13 state of the ThO molecule. The first two parameters are required to interpret the experimental data in terms of the eEDM and kT,P constant. We have investigated the electron correlation for all of the 98 electrons of ThO simultaneously up to the level of the coupled cluster with single, double, and noniterative triple amplitudes, CCSD(T), theory. Contributions from iterative triple and noniterative quadruple cluster amplitudes for the valence electrons have been also treated. The obtained values are Eeff = 79.9 GV/cm, WT,P = 113.1 kHz. The theoretical uncertainty of these values is estimated to be about two times smaller than that of our previous study [L. V. Skripnikov and A. V. Titov, J. Chem. Phys., 142, 024301 (2015)]. It was found that the correlation of the inner- and outer-core electrons contributes 9% to the effective electric field. The values of the molecule frame dipole moment of the Δ13 state and the H3Δ1→X1Σ+ transition energy of ThO calculated within the same methods are in a very good agreement with the experiment.

8.
J Chem Phys ; 142(2): 024301, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25591347

ABSTRACT

Recently, improved limits on the electron electric dipole moment, and dimensionless constant, kT,P, characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction in the H(3)Δ1 state of ThO molecule were obtained by the ACME collaboration [J. Baron et al., Science 343, 269 (2014)]. The interpretation of the experiment in terms of these fundamental quantities is based on the results of theoretical study of appropriate ThO characteristics, the effective electric field acting on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT,P, given in Skripnikov et al. [J. Chem. Phys. 139, 221103 (2013)] by St. Petersburg group. To reduce the uncertainties of the given limits, we report improved calculations of the molecular state-specific quantities Eeff, 81.5 GV/cm, and WT,P, 112 kHz, with the uncertainty within 7% of the magnitudes. Thus, the values recommended to use for the upper limits of the quantities are 75.8 GV/cm and 104 kHz, correspondingly. The hyperfine structure constant, molecule-frame dipole moment of the H(3)Δ1 state, and the H(3)Δ1 → X(1)Σ(+) transition energy which, in general, can serve as a measure of reliability of the obtained Eeff and WT,P values are also calculated. In addition, we report the first calculation of g-factor for the H(3)Δ1 state of ThO. The results are compared to the earlier experimental and theoretical studies, and a detailed analysis of uncertainties of the calculations is given.

10.
Phys Rev Lett ; 113(26): 263006, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615324

ABSTRACT

Investigations of CP violation in the hadron sector may be done using measurements in the ThO molecule. Recent measurements in this molecule improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Another time-reversal (T) and parity (P)-violating effect in 229ThO is induced by the nuclear magnetic quadrupole moment. We perform nuclear and molecular calculations to express this effect in terms of the strength constants of T, P-odd nuclear forces, neutron EDM, QCD vacuum angle θ, quark EDM, and chromo-EDM.

11.
J Chem Phys ; 139(22): 221103, 2013 Dec 14.
Article in English | MEDLINE | ID: mdl-24329049

ABSTRACT

An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.

SELECTION OF CITATIONS
SEARCH DETAIL
...