Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647333

ABSTRACT

Microvascular endothelial cells (MVECs) have many critical roles, including control of vascular tone, regulation of thrombosis, and angiogenesis. Significant heterogeneity in endothelial cell (EC) genotype and phenotype depends on their vascular bed and host disease state. The ability to isolate MVECs from tissue-specific vascular beds and individual patient groups offers the opportunity to directly compare MVEC function in different disease states. Here, using subcutaneous adipose tissue (SAT) taken at the time of insertion of cardiac implantable electronic devices (CIED), we describe a method for the isolation of a pure population of functional human subcutaneous adipose tissue MVEC (hSATMVEC) and an experimental model of hSATMVEC-adipocyte cross-talk. hSATMVEC were isolated following enzymatic digestion of SAT by incubation with anti-CD31 antibody-coated magnetic beads and passage through magnetic columns. hSATMVEC were grown and passaged on gelatin-coated plates. Experiments used cells at passages 2-4. Cells maintained classic features of EC morphology until at least passage 5. Flow cytometric assessment showed 99.5% purity of isolated hSATMVEC, defined as CD31+/CD144+/CD45-. Isolated hSATMVEC from controls had a population doubling time of approximately 57 h, and active proliferation was confirmed using a cell proliferation imaging kit. Isolated hSATMVEC function was assessed using their response to insulin stimulation and angiogenic tube-forming potential. We then established an hSATMVEC-subcutaneous adipocyte co-culture model to study cellular cross-talk and demonstrated a downstream effect of hSATMVEC on adipocyte function. hSATMVEC can be isolated from SAT taken at the time of CIED insertion and are of sufficient purity to both experimentally phenotype and study hSATMVEC-adipocyte cross-talk.


Subject(s)
Adipocytes , Endothelial Cells , Subcutaneous Fat , Humans , Adipocytes/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Subcutaneous Fat/cytology , Cell Communication/physiology
3.
EMBO Rep ; 22(5): e50767, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33934497

ABSTRACT

Changes in composition of the intestinal microbiota are linked to the development of obesity and can lead to endothelial cell (EC) dysfunction. It is unknown whether EC can directly influence the microbiota. Insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) are critical for coupling nutritional status and cellular growth; IGF-1R is expressed in multiple cell types including EC. The role of ECIGF-1R in the response to nutritional obesity is unexplored. To examine this, we use gene-modified mice with EC-specific overexpression of human IGF-1R (hIGFREO) and their wild-type littermates. After high-fat feeding, hIGFREO weigh less, have reduced adiposity and have improved glucose tolerance. hIGFREO show an altered gene expression and altered microbial diversity in the gut, including a relative increase in the beneficial genus Akkermansia. The depletion of gut microbiota with broad-spectrum antibiotics induces a loss of the favourable metabolic differences seen in hIGFREO mice. We show that IGF-1R facilitates crosstalk between the EC and the gut wall; this crosstalk protects against diet-induced obesity, as a result of an altered gut microbiota.


Subject(s)
Insulin Resistance , Microbiota , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/genetics , Receptor, IGF Type 1/genetics
4.
Am J Physiol Cell Physiol ; 319(1): C64-C74, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32401607

ABSTRACT

Insulin resistance leads to excessive endothelial cell (EC) superoxide generation and accelerated atherosclerosis. The principal source of superoxide from the insulin-resistant endothelium is the Nox2 isoform of NADPH oxidase. Here we examine the therapeutic potential of Nox2 inhibition on superoxide generation in saphenous vein ECs (SVECs) from patients with advanced atherosclerosis and type 2 diabetes and on vascular function, vascular damage, and lipid deposition in apolipoprotein E-deficient (ApoE-/-) mice with EC-specific insulin resistance (ESMIRO). To examine the effect of genetic inhibition of Nox2, ESMIRO mice deficient in ApoE-/- and Nox2 (ESMIRO/ApoE-/-/Nox2-/y) were generated and compared with ESMIRO/ApoE-/-/Nox2+/y littermates. To examine the effect of pharmacological inhibition of Nox2, we administered gp91dstat or scrambled peptide to ESMIRO/ApoE-/- mice. SVECs from diabetic patients had increased expression of Nox2 protein with concomitant increase in superoxide generation, which could be reduced by the Nox2 inhibitor gp91dstat. After 12 wk Western diet, ESMIRO/ApoE-/-/Nox2-/y mice had reduced EC superoxide generation and greater aortic relaxation to acetylcholine. ESMIRO/ApoE-/-/Nox2-/y mice developed more lipid deposition in the thoraco-abdominal aorta with multiple foci of elastin fragmentation at the level of the aortic sinus and greater expression of intercellular adhesion molecule-1 (ICAM-1). Gp91dstat reduced EC superoxide and lipid deposition in the thoraco-abdominal aorta of ESMIRO/ApoE-/- mice without causing elastin fragmentation or increased ICAM-1 expression. These results demonstrate that insulin resistance is characterized by increased Nox2-derived vascular superoxide. Complete deletion of Nox2 in mice with EC insulin resistance exacerbates, whereas partial pharmacological Nox2 inhibition protects against, insulin resistance-induced vascular damage.


Subject(s)
Diabetes Mellitus/metabolism , Endothelium, Vascular/metabolism , Glycoproteins/pharmacology , Insulin Resistance/physiology , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/genetics , Aged , Aged, 80 and over , Animals , Cells, Cultured , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Middle Aged , NADPH Oxidase 2/deficiency , Organ Culture Techniques
5.
J Clin Invest ; 130(8): 4104-4117, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32407295

ABSTRACT

Diabetes, obesity, and Alzheimer's disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased ß-site amyloid precursor protein-cleaving (APP-cleaving) enzyme 1 (BACE1), APP, and ß-amyloid (Aß) are linked with vascular disease development and increased BACE1 and Aß accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, increased Aß, and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice increased plasma and vascular Aß42 that correlated with decreased NO bioavailability, endothelial dysfunction, and increased blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aß42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aß42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation, and raised blood pressure. In humans, increased plasma Aß42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aß42 reduced endothelial NO synthase (eNOS), cyclic GMP (cGMP), and protein kinase G (PKG) activity independently of diet, whereas endothelin-1 was increased by diet and Aß42. Lowering Aß42 reversed the DIO deficit in the eNOS/cGMP/PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.


Subject(s)
Amyloid beta-Peptides/blood , Diabetes Mellitus/blood , Diabetic Angiopathies/blood , Obesity/blood , Peptide Fragments/blood , Signal Transduction , Amyloid beta-Peptides/genetics , Animals , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Nitric Oxide/blood , Nitric Oxide/genetics , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Obesity/genetics , Obesity/pathology , Peptide Fragments/genetics
6.
Diab Vasc Dis Res ; 16(2): 160-170, 2019 03.
Article in English | MEDLINE | ID: mdl-30295509

ABSTRACT

Insulin and insulin-like growth factor-1 stimulate specific responses in arteries, which may be disrupted by diet-induced obesity. We examined (1) temporal effects of high-fat diet compared to low-fat diet in mice on insulin receptor, insulin-like growth factor-1 receptor, insulin receptor/insulin-like growth factor-1 receptor hybrid receptor expression and insulin/insulin-like growth factor-1-mediated Akt phosphorylation in aorta; and (2) effects of high-fat diet on insulin and insulin-like growth factor-1-mediated Akt phosphorylation and vascular tone in resistance arteries. Medium-term high-fat diet (5 weeks) decreased insulin-like growth factor-1 receptor expression and increased hybrid expression (~30%) only. After long-term (16 weeks) high-fat diet, insulin receptor expression was reduced by ~30%, insulin-like growth factor-1 receptor expression decreased a further ~40% and hybrid expression increased a further ~60%. Independent correlates of hybrid receptor expression were high-fat diet, duration of high-fat diet and plasma insulin-like growth factor-1 (all p < 0.05). In aorta, insulin was a more potent activator of Akt than insulin-like growth factor-1, whereas in resistance arteries, insulin-like growth factor-1 was more potent than insulin. High-fat diet blunted insulin-mediated vasorelaxation ( p < 0.01) but had no effect on insulin-like growth factor-1-mediated vasorelaxation in resistance arteries. Our findings support the possibility that hybrid receptor level is influenced by nutritional and metabolic cues. Moreover, vessel-dependent effects of insulin and insulin-like growth factor-1 on vascular tone and Akt activation may have implications in treating obesity-related vascular disease.


Subject(s)
Aorta/drug effects , Insulin/pharmacology , Mesenteric Arteries/drug effects , Obesity/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Vascular Resistance/drug effects , Animals , Antigens, CD/metabolism , Aorta/enzymology , Cells, Cultured , Diet, Fat-Restricted , Diet, High-Fat , Disease Models, Animal , Enzyme Activation , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Insulin-Like Growth Factor I/pharmacology , Male , Mesenteric Arteries/enzymology , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Obesity/blood , Obesity/physiopathology , Phosphorylation , Receptor, IGF Type 1/genetics , Receptor, Insulin/metabolism , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Vasodilation/drug effects
7.
Diabetes ; 66(11): 2808-2821, 2017 11.
Article in English | MEDLINE | ID: mdl-28830894

ABSTRACT

Shc homology 2-containing inositol 5' phosphatase-2 (SHIP2) is a lipid phosphatase that inhibits insulin signaling downstream of phosphatidylinositol 3-kinase (PI3K); its role in vascular function is poorly understood. To examine its role in endothelial cell (EC) biology, we generated mice with catalytic inactivation of one SHIP2 allele selectively in ECs (ECSHIP2Δ/+). Hyperinsulinemic-euglycemic clamping studies revealed that ECSHIP2Δ/+ was resistant to insulin-stimulated glucose uptake in adipose tissue and skeletal muscle compared with littermate controls. ECs from ECSHIP2Δ/+ mice had increased basal expression and activation of PI3K downstream targets, including Akt and endothelial nitric oxide synthase, although incremental activation by insulin and shear stress was impaired. Insulin-mediated vasodilation was blunted in ECSHIP2Δ/+ mice, as was aortic nitric oxide bioavailability. Acetylcholine-induced vasodilation was also impaired in ECSHIP2Δ/+ mice, which was exaggerated in the presence of a superoxide dismutase/catalase mimetic. Superoxide abundance was elevated in ECSHIP2Δ/+ ECs and was suppressed by PI3K and NADPH oxidase 2 inhibitors. These findings were phenocopied in healthy human ECs after SHIP2 silencing. Our data suggest that endothelial SHIP2 is required to maintain normal systemic glucose homeostasis and prevent oxidative stress-induced endothelial dysfunction.


Subject(s)
Endothelium, Vascular/metabolism , Insulin Resistance/physiology , NADPH Oxidase 2/metabolism , Oxidative Stress/physiology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Animals , Aorta , Cells, Cultured , Endothelial Cells , Gene Expression Regulation/physiology , Glucose Clamp Technique , Glucose Intolerance , Mice , Mice, Knockout , NADPH Oxidase 2/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Vasoconstriction/physiology
8.
Circ Res ; 120(5): 784-798, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-27920123

ABSTRACT

RATIONALE: In the endothelium, insulin stimulates endothelial NO synthase (eNOS) to generate the antiatherosclerotic signaling radical NO. Insulin-resistant type 2 diabetes mellitus is associated with reduced NO availability and accelerated atherosclerosis. The effect of enhancing endothelial insulin sensitivity on NO availability is unclear. OBJECTIVE: To answer this question, we generated a mouse with endothelial cell (EC)-specific overexpression of the human insulin receptor (hIRECO) using the Tie2 promoter-enhancer. METHODS AND RESULTS: hIRECO demonstrated significant endothelial dysfunction measured by blunted endothelium-dependent vasorelaxation to acetylcholine, which was normalized by a specific Nox2 NADPH oxidase inhibitor. Insulin-stimulated phosphorylation of protein kinase B was increased in hIRECO EC as was Nox2 NADPH oxidase-dependent generation of superoxide, whereas insulin-stimulated and shear stress-stimulated eNOS activations were blunted. Phosphorylation at the inhibitory residue Y657 of eNOS and expression of proline-rich tyrosine kinase 2 that phosphorylates this residue were significantly higher in hIRECO EC. Inhibition of proline-rich tyrosine kinase 2 improved insulin-induced and shear stress-induced eNOS activation in hIRECO EC. CONCLUSIONS: Enhancing insulin sensitivity specifically in EC leads to a paradoxical decline in endothelial function, mediated by increased tyrosine phosphorylation of eNOS and excess Nox2-derived superoxide. Increased EC insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide. Inhibition of proline-rich tyrosine kinase 2 restores insulin-induced and shear stress-induced NO production. This study demonstrates for the first time that increased endothelial insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Insulin Resistance/physiology , Signal Transduction/physiology , Animals , Atherosclerosis/pathology , Cells, Cultured , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques
9.
Arterioscler Thromb Vasc Biol ; 34(9): 2051-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25012136

ABSTRACT

OBJECTIVES: Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. APPROACH AND RESULTS: We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. CONCLUSIONS: Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury.


Subject(s)
Carotid Artery Diseases/prevention & control , Endothelium, Vascular/physiology , Femoral Artery/injuries , Hematopoietic Stem Cells/physiology , Neovascularization, Physiologic/physiology , Receptor, IGF Type 1/physiology , Animals , Aorta, Thoracic/pathology , Apolipoproteins E/deficiency , Carotid Artery Diseases/etiology , Carotid Artery Diseases/genetics , Cell Adhesion , Endothelium, Vascular/metabolism , Female , Gene Expression Regulation , Genotype , Hematopoietic Stem Cell Transplantation , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Phenotype , Phosphorylation , Protein Processing, Post-Translational , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor, IGF Type 1/deficiency , Receptor, IGF Type 1/genetics , Regeneration
10.
Stem Cells ; 32(10): 2714-23, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24916783

ABSTRACT

Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented re-endothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men.


Subject(s)
Blood Vessels/pathology , Endothelial Cells/cytology , Endothelial Cells/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Wound Healing , Adult , Animals , Asia , Demography , Endothelial Cells/drug effects , Gene Silencing , Humans , Insulin/pharmacology , Male , Mice, Nude , Phosphorylation/drug effects , Risk Factors , White People , Wound Healing/drug effects
11.
Atherosclerosis ; 230(1): 131-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23958265

ABSTRACT

OBJECTIVE: Systemic insulin resistance is associated with a portfolio of risk factors for atherosclerosis development. We sought to determine whether insulin resistance specifically at the level of the endothelium promotes atherosclerosis and to examine the potential involvement of reactive oxygen species. METHODS: We cross-bred mice expressing a dominant negative mutant human insulin receptor specifically in the endothelium (ESMIRO) with ApoE(-/-) mice to examine the effect of endothelium-specific insulin resistance on atherosclerosis. RESULTS: ApoE(-/-)/ESMIRO mice had similar blood pressure, plasma lipids and whole-body glucose tolerance, but blunted endothelial insulin signalling, in comparison to ApoE(-/-) mice. Atherosclerosis was significantly increased in ApoE(-/-)/ESMIRO mice at the aortic sinus (226 ± 16 versus 149 ± 24 × 10(3) µm(2), P = 0.01) and lesser curvature of the aortic arch (12.4 ± 1.2% versus 9.4 ± 0.9%, P = 0.035). Relaxation to acetylcholine was blunted in aorta from ApoE(-/-)/ESMIRO mice (Emax 65 ± 41% versus 103 ± 6%, P = 0.02) and was restored by the superoxide dismutase mimetic MnTMPyP (Emax 112 ± 15% versus 65 ± 41%, P = 0.048). Basal generation of superoxide was increased 1.55 fold (P = 0.01) in endothelial cells from ApoE(-/-)/ESMIRO mice and was inhibited by the NADPH oxidase inhibitor gp91ds-tat (-12 ± 0.04%, P = 0.04), the NO synthase inhibitor L-NMMA (-8 ± 0.02%, P = 0.001) and the mitochondrial specific inhibitor rotenone (-23 ± 0.04%, P = 0.006). CONCLUSIONS: Insulin resistance specifically at the level of the endothelium leads to acceleration of atherosclerosis in areas with disturbed flow patterns such as the aortic sinus and the lesser curvature of the aorta. We have identified a potential role for increased generation of reactive oxygen species from multiple enzymatic sources in promoting atherosclerosis in this setting.


Subject(s)
Atherosclerosis/physiopathology , Endothelium, Vascular/pathology , Insulin Resistance , Reactive Oxygen Species , Acetylcholine/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Blood Pressure , Body Weight , Endothelial Cells/cytology , Endothelium, Vascular/metabolism , Genes, Dominant , Glucose/metabolism , Glucose Tolerance Test , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation , Receptor, Insulin/genetics , Risk Factors
12.
Diabetes ; 62(6): 2130-4, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23349484

ABSTRACT

Insulin resistance is characterized by excessive endothelial cell generation of potentially cytotoxic concentrations of reactive oxygen species. We examined the role of NADPH oxidase (Nox) and specifically Nox2 isoform in superoxide generation in two complementary in vivo models of human insulin resistance (endothelial specific and whole body). Using three complementary methods to measure superoxide, we demonstrated higher levels of superoxide in insulin-resistant endothelial cells, which could be pharmacologically inhibited both acutely and chronically, using the Nox inhibitor gp91ds-tat. Similarly, insulin resistance-induced impairment of endothelial-mediated vasorelaxation could also be reversed using gp91ds-tat. siRNA-mediated knockdown of Nox2, which was specifically elevated in insulin-resistant endothelial cells, significantly reduced superoxide levels. Double transgenic mice with endothelial-specific insulin resistance and deletion of Nox2 showed reduced superoxide production and improved vascular function. This study identifies Nox2 as the central molecule in insulin resistance-mediated oxidative stress and vascular dysfunction. It also establishes pharmacological inhibition of Nox2 as a novel therapeutic target in insulin resistance-related vascular disease.


Subject(s)
Endothelial Cells/drug effects , Insulin Resistance/physiology , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Acetylcholine/pharmacology , Animals , Cells, Cultured , Chromatography, High Pressure Liquid , Immunoblotting , Insulin Resistance/genetics , Male , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , NADPH Oxidase 2 , NADPH Oxidases/genetics , Polymerase Chain Reaction , Vasodilator Agents/pharmacology
13.
Diabetes ; 61(9): 2359-68, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22733797

ABSTRACT

We recently demonstrated that reducing IGF-1 receptor (IGF-1R) numbers in the endothelium enhances nitric oxide (NO) bioavailability and endothelial cell insulin sensitivity. In the present report, we aimed to examine the effect of increasing IGF-1R on endothelial cell function and repair. To examine the effect of increasing IGF-1R in the endothelium, we generated mice overexpressing human IGF-1R in the endothelium (human IGF-1R endothelium-overexpressing mice [hIGFREO]) under direction of the Tie2 promoter enhancer. hIGFREO aorta had reduced basal NO bioavailability (percent constriction to N(G)-monomethyl-l-arginine [mean (SEM) wild type 106% (30%); hIGFREO 48% (10%)]; P < 0.05). Endothelial cells from hIGFREO had reduced insulin-stimulated endothelial NO synthase activation (mean [SEM] wild type 170% [25%], hIGFREO 58% [3%]; P = 0.04) and insulin-stimulated NO release (mean [SEM] wild type 4,500 AU [1,000], hIGFREO 1,500 AU [700]; P < 0.05). hIGFREO mice had enhanced endothelium regeneration after denuding arterial injury (mean [SEM] percent recovered area, wild type 57% [2%], hIGFREO 47% [5%]; P < 0.05) and enhanced endothelial cell migration in vitro. The IGF-1R, although reducing NO bioavailability, enhances in situ endothelium regeneration. Manipulating IGF-1R in the endothelium may be a useful strategy to treat disorders of vascular growth and repair.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/physiology , Receptor, IGF Type 1/physiology , Animals , Aorta/physiology , Blood Glucose/metabolism , Blood Pressure , Female , Homeostasis , Humans , Male , Mice , Mice, Transgenic , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/biosynthesis , Receptor, IGF Type 1/deficiency , Receptor, IGF Type 1/genetics , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...