Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Curr Issues Mol Biol ; 46(1): 96-105, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38248310

ABSTRACT

This study investigates a unique and complex eye phenotype characterized by minimal iris defects, foveal hypoplasia, optic nerve coloboma, and severe posterior segment damage. Through genetic analysis and bioinformatic tools, a specific nonsynonymous substitution, p.(Asn114Ser), within the PAX6 gene's paired domain is identified. Although this substitution is not in direct contact with DNA, its predicted stabilizing effect on the protein structure challenges the traditional understanding of PAX6 mutations, suggesting a gain-of-function mechanism. Contrary to classical loss-of-function effects, this gain-of-function hypothesis aligns with research demonstrating PAX6's dosage sensitivity. Gain-of-function mutations, though less common, can lead to diverse phenotypes distinct from aniridia. Our findings emphasize PAX6's multifaceted influence on ocular phenotypes and the importance of genetic variations. We contribute a new perspective on PAX6 mutations by suggesting a potential gain-of-function mechanism and showcasing the complexities of ocular development. This study sheds light on the intricate interplay of the genetic alterations and regulatory mechanisms underlying complex eye phenotypes. Further research, validation, and collaboration are crucial to unravel the nuanced interactions shaping ocular health and development.

2.
Biomedicines ; 10(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36552011

ABSTRACT

Detection and precise genomic mapping of balanced chromosomal abnormalities in patients with impaired fertility or a clinical phenotype represent a challenge for current cytogenomics owing to difficulties with precise breakpoint localization in the regions enriched for DNA repeats and high genomic variation in such regions. Here, we present a comprehensive cytogenomic approach to breakpoint mapping in a rare paracentric inversion on 10q (in a patient with oligoasthenoteratozoospermia and necrozoospermia) that does not affect other phenotype traits. Multicolor banding, chromosomal microarray analysis, chromosome microdissection with reverse painting, and single-copy sequencing of the rearranged chromosome were performed to determine the length and position of the inverted region as well as to rule out a genetic imbalance at the breakpoints. As a result, a paracentric 19.251 Mbp inversion at 10q22.2q23.3 was described. The most probable location of the breakpoints was predicted using the hg38 assembly. The problems of genetic counseling associated with enrichment for repeats and high DNA variability of usual breakpoint regions were discussed. Possible approaches for cytogenomic assessment of couples with balanced chromosome rearrangements and problems like reproductive failures were considered and suggested as useful part of effective genetic counseling.

3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142510

ABSTRACT

Rafiq syndrome (RAFQS) is a congenital disorder of glycosylation (CDG) that is caused by mutations in the MAN1B1 gene and characterized by impaired protein and lipid glycosylation. RAFQS is characterized by a delay in intellectual and motor development, facial and other dysmorphism, truncal obesity, behavior problems, and hypotonia. We describe a Russian patient with delayed intellectual and motor development, a lack of speech, disorientation in space and time, impaired attention and memory, and episodes of aggression. Screening for lysosomal, amino acid, organic acid, and mitochondrial disorders was normal. The patient was referred for the targeted sequencing of the "Hereditary Metabolic Disorders" panel. The genetic testing revealed two heterozygous pathogenic variants in the MAN1B1 gene: the previously reported c.1000C > T (p.Arg334Cys) and the novel c.1065 + 1 G > C. Thus, the patient's clinical picture and genetic analysis confirmed RAFQS in the patient.


Subject(s)
Congenital Disorders of Glycosylation , Amino Acids/genetics , Congenital Disorders of Glycosylation/genetics , Heterozygote , Humans , Lipids , Mutation
4.
Cytogenet Genome Res ; 162(3): 97-108, 2022.
Article in English | MEDLINE | ID: mdl-35636401

ABSTRACT

Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (AR) gene. The XCI status was analysed in 313 women with pregnancy loss and in 87 spontaneously aborted embryos with 46,XX karyotype, as well as in control groups of 135 women without pregnancy loss and 64 embryos with 46,XX karyotype from induced abortions in women who terminated a normal pregnancy. The frequency of sXCI differed significantly between women with miscarriages and women without pregnancy losses (6.3% and 2.2%, respectively; p = 0.019). To exclude primary causes of sXCI, sequencing of the XIST and XACT genes was performed. The XIST and XACT gene sequencing revealed no known pathogenic variants that could lead to sXCI. Molecular karyotyping was performed using aCGH, followed by verification of X-linked CNVs by RT-PCR and MLPA. Microdeletions at Xp11.23 and Xq24 as well as gains of Xq28 were detected in women with sXCI and pregnancy loss.


Subject(s)
Abortion, Induced , Abortion, Spontaneous , Abortion, Spontaneous/genetics , Biomarkers , Chromosomes , Chromosomes, Human, X/genetics , Female , Humans , Pregnancy , Receptors, Androgen/genetics , X Chromosome Inactivation/genetics
5.
J Assist Reprod Genet ; 38(11): 2893-2908, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34554362

ABSTRACT

PURPOSE: Comparative analysis of multilocus imprinting disturbances (MLIDs) in miscarriages from women with sporadic (SPL) and recurrent pregnancy loss (RPL) and identification of variants in the imprinting control gene NLRP7 that may lead to MLIDs. METHODS: Chorionic cytotrophoblast and extraembryonic mesoderm samples from first-trimester miscarriages were evaluated in 120 women with RPL and 134 women with SPL; 100 induced abortions were analyzed as a control group. All miscarriages had a normal karyotype. Epimutations in 7 imprinted genes were detected using methyl-specific PCR and confirmed with DNA pyrosequencing. Sequencing of all 13 exons and adjusted intron regions of the NLRP7 gene was performed. RESULTS: Epimutations in imprinted genes were more frequently detected (p < 0.01) in the placental tissues of miscarriages from women with RPL (7.1%) than in those of women with SPL (2.7%). The predominant epimutation was postzygotic hypomethylation of maternal alleles of imprinted genes (RPL, 5.0%; SPL, 2.1%; p < 0.01). The frequency of MLID was higher among miscarriages from women with RPL than among miscarriages from women with SPL (1.7% and 0.4%, respectively, p < 0.01). Variants in NLRP7 were detected only in miscarriages from women with RPL. An analysis of the parental origin of NLRP7 variants revealed heterozygous carriers in families with RPL who exhibited spontaneous abortions with MLIDs and compound heterozygosity for NLRP7 variants. CONCLUSION: RPL is associated with NLRP7 variants that lead to germinal and postzygotic MLIDs that are incompatible with normal embryo development. TRIAL REGISTRATION: Not applicable.


Subject(s)
Abortion, Habitual/pathology , Adaptor Proteins, Signal Transducing/genetics , DNA Methylation , Genomic Imprinting , Heterozygote , Mutation , Abortion, Habitual/etiology , Abortion, Habitual/genetics , Adult , Female , Humans , Male , Pregnancy
6.
Cytogenet Genome Res ; 161(3-4): 105-119, 2021.
Article in English | MEDLINE | ID: mdl-33849037

ABSTRACT

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , DNA Methylation , Developmental Disabilities/genetics , Endopeptidases/genetics , Intellectual Disability/genetics , Adolescent , Adult , Child , Child, Preschool , CpG Islands/genetics , Family Health , Female , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Maternal Inheritance/genetics
7.
Genes (Basel) ; 11(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33316910

ABSTRACT

Ring chromosome 8 (r(8)) is one of the least frequent ring chromosomes. Usually, maternal chromosome 8 forms a ring, which can be lost from cells due to mitotic instability. The 8q24 region contains the imprinted KCNK9 gene, which is expressed from the maternal allele. Heterozygous KCNK9 mutations are associated with the imprinting disorder Birk-Barel syndrome. Here, we report a 2.5-year-old boy with developmental delay, microcephaly, dysmorphic features, diffuse muscle hypotonia, feeding problems, motor alalia and noncoarse neurogenic type of disturbance of muscle electrogenesis, partially overlapping with Birk-Barel syndrome phenotype. Cytogenetic analysis of lymphocytes revealed his karyotype to be 46,XY,r(8)(p23q24.3)[27]/45,XY,-8[3]. A de novo 7.9 Mb terminal 8p23.3p23.1 deletion, a 27.1 Mb 8p23.1p11.22 duplication, and a 4.4 Mb intact segment with a normal copy number located between them, as well as a 154-kb maternal LINGO2 gene deletion (9p21.2) with unknown clinical significance were identified by aCGH + SNP array. These aberrations were confirmed by real-time PCR. According to FISH analysis, the 8p23.1-p11.22 duplication was inverted. The ring chromosome originated from maternal chromosome 8. Targeted massive parallel sequencing did not reveal the KCNK9 mutations associated with Birk-Barel syndrome. Our data allow to assume that autosomal monosomy with inactive allele of imprinted gene arising from the loss of a ring chromosome in some somatic cells may be an etiological mechanism of mosaic imprinting disorders, presumably with less severe phenotype.


Subject(s)
Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Craniofacial Abnormalities/metabolism , Genomic Imprinting/genetics , Humans , Intellectual Disability/metabolism , Karyotype , Karyotyping/methods , Male , Membrane Proteins/genetics , Mosaicism , Muscle Hypotonia/metabolism , Mutation/genetics , Nerve Tissue Proteins/genetics , Phenotype , Potassium Channels, Tandem Pore Domain/genetics , Ring Chromosomes
8.
Cytogenet Genome Res ; 160(5): 245-254, 2020.
Article in English | MEDLINE | ID: mdl-32485717

ABSTRACT

Chromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI). The first case is a boy presenting with X-linked mental retardation, Nascimento type, due to a 168-kb Xq24 microdeletion involving 5 genes (CXorf56, UBE2A, NKRF, SEPT6, and MIR766) inherited from a healthy mother and grandmother with sXCI. In the second family, the presence of a 239-kb Xq24 microdeletion involving 3 additional genes (SLC25A43, SLC25A5-AS1, and SLC25A5) was detected in a woman with sXCI and a history of recurrent pregnancy loss with a maternal family history without reproductive wastages or products of conception. These cases provide evidence that women with an Xq24 microdeletion and sXCI may be at risk for having a child with intellectual disability or for experiencing a pregnancy loss due to the ontogenetic pleiotropy of a chromosomal microdeletion and its incomplete penetrance modified by sXCI.


Subject(s)
Abortion, Habitual/genetics , Chromosome Deletion , Chromosomes, Human, X/genetics , Mothers , Ubiquitin-Conjugating Enzymes/deficiency , Ubiquitin-Conjugating Enzymes/genetics , X Chromosome Inactivation/genetics , Adult , Child, Preschool , Epigenesis, Genetic , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Phenotype , Syndrome , Young Adult
9.
Appl Immunohistochem Mol Morphol ; 28(6): 477-483, 2020 07.
Article in English | MEDLINE | ID: mdl-30896548

ABSTRACT

The premalignant process preceding squamous cell lung cancer is not inevitable; it can stop at any of the bronchial lesions: basal cell hyperplasia (BCH), squamous metaplasia (SM), and dysplasia and then progress or regress. At present, the mechanisms underlying the progression of the bronchial lesions remain undefined. Previously, we hypothesized that bronchial lesions that presented individually or combined with each other in the bronchi of lung cancer patients mirror the different "scenarios" of the premalignant process: individual BCH-the stoppage at the stage of hyperplasia, BCH plus SM-the progression of hyperplasia to metaplasia, and SM plus dysplasia-the progression of metaplasia to dysplasia. In this study, we analyzed gene expression profiles of BCH, SM, and dysplasia depending on their cooccurrence in the bronchi of lung cancer patients. The immune response gene expression was found to be a key difference between the individual BCH and BCH combined with SM lesions and a potential mechanism that determines the progression of hyperplasia to metaplasia. Upregulation of the cell cycle and downregulation of the cilium assembly genes mainly distinguished SM that copresented with dysplasia from SM that copresented with BCH and is a probable mechanism of the progression of metaplasia to dysplasia. Dysplasia showed mainly overexpression of the cell division genes and underexpression of the inflammation genes. Thus, this study demonstrates the significant gene expression differences between the premalignant lesions depending on their cooccurrence in the bronchi and sheds light on the mechanisms of the precancerous process preceding squamous cell lung cancer.


Subject(s)
Bronchi/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/metabolism , Hyperplasia/metabolism , Metaplasia/metabolism , Precancerous Conditions/metabolism , Bronchi/cytology , Bronchi/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Division/genetics , Computational Biology , Disease Progression , Gene Expression Profiling , Gene Ontology , Humans , Hyperplasia/genetics , Hyperplasia/immunology , Hyperplasia/pathology , Immunohistochemistry , Inflammation/genetics , Inflammation/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Metaplasia/genetics , Metaplasia/immunology , Metaplasia/pathology , Multigene Family , Oligonucleotide Array Sequence Analysis , Precancerous Conditions/genetics
10.
Am J Med Genet A ; 176(11): 2395-2403, 2018 11.
Article in English | MEDLINE | ID: mdl-30244536

ABSTRACT

The application of array-based comparative genomic hybridization and next-generation sequencing has identified many chromosomal microdeletions and microduplications in patients with different pathological phenotypes. Different copy number variations are described within the short arm of chromosome 18 in patients with skin diseases. In particular, full or partial monosomy 18p has also been associated with keratosis pilaris. Here, for the first time, we report a young male patient with intellectual disability, diabetes mellitus (type I), and keratosis pilaris, who exhibited a de novo 45-kb microduplication of exons 4-22 of LAMA1, located at 18p11.31, and a 432-kb 18p11.32 microduplication of paternal origin containing the genes METTL4, NDC80, and CBX3P2 and exons 1-15 of the SMCHD1 gene. The microduplication of LAMA1 was identified in skin fibroblasts but not in lymphocytes, whereas the larger microduplication was present in both tissues. We propose LAMA1 as a novel candidate gene for keratosis pilaris. Although inherited from a healthy father, the 18p11.32 microduplication, which included relevant genes, could also contribute to phenotype manifestation.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Duplication/genetics , Darier Disease/complications , Darier Disease/genetics , Eyebrows/abnormalities , Intellectual Disability/complications , Intellectual Disability/genetics , Laminin/genetics , Mosaicism , Adolescent , Child , Child, Preschool , Comparative Genomic Hybridization , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Infant , Infant, Newborn , Male , Skin/pathology
11.
Fertil Steril ; 109(6): 1127-1134.e1, 2018 06.
Article in English | MEDLINE | ID: mdl-29935648

ABSTRACT

OBJECTIVE: To compare the genomic profiles of blastocoel fluid (BF), inner cell mass (ICM), and trophectoderm (TE) cells derived from the same blastocyst. DESIGN: Prospective study. SETTING: Academic and in vitro fertilization units. PATIENT(S): Sixteen donated cryopreserved embryos at blastocyst stage. INTERVENTION(S): BF, TE, and ICM cells were retrieved from each blastocyst for chromosome analysis by means of next-generation sequencing (NGS). MAIN OUTCOME MEASURE(S): Aneuploidy screening and assessment of mosaicism in BF, TE and ICM samples with subsequent comparison of genomic profiles between the three blastocyst compartments. RESULT(S): Out of 16 blastocysts, 10 BF samples and 14 TE and ICM samples provided reliable NGS data for comprehensive chromosome analysis. Only 40.0% of BF-DNA karyotypes were fully concordant with TE or ICM, compared with 85.7% concordance between TE and ICM. In addition, BF-DNA was burdened with mosaic aneuploidies and the total number of affected chromosomes in BF was significantly higher compared with the TE and ICM. CONCLUSION(S): BF-DNA can be successfully amplified and subjected to NGS, but owing to increased discordance with ICM and TE, BF does not adequately represent the status of the rest of the embryo. To overcome biologic and technical challenges associated with BF sampling and processing, blastocentesis would require improvement in both laboratory protocols and aneuploidy calling algorithms. Therefore, TE biopsy remains the most effective way to predict embryonic karyotype, and the use of BF as a single source of DNA for preimplantation genetic screening is not yet advised.


Subject(s)
Blastocyst Inner Cell Mass/pathology , Blastocyst/pathology , Ectoderm/pathology , Intracellular Fluid/chemistry , Karyotyping , Preimplantation Diagnosis , Aneuploidy , Blastocyst Inner Cell Mass/metabolism , Cells, Cultured , Ectoderm/metabolism , Female , High-Throughput Nucleotide Sequencing , Humans , Intracellular Fluid/metabolism , Karyotype , Karyotyping/methods , Karyotyping/standards , Mosaicism , Preimplantation Diagnosis/methods , Preimplantation Diagnosis/standards , Reproducibility of Results
12.
Mol Cytogenet ; 11: 26, 2018.
Article in English | MEDLINE | ID: mdl-29736186

ABSTRACT

BACKGROUND: Ring chromosome instability may influence a patient's phenotype and challenge its interpretation. RESULTS: Here, we report a 4-year-old girl with a compound phenotype. Cytogenetic analysis revealed her karyotype to be 46,XX,r(22). aCGH identified a 180 kb 22q13.32 duplication, a de novo 2.024 Mb subtelomeric 22q13.32-q13.33 deletion, which is associated with Phelan-McDermid syndrome, and a maternal single gene 382-kb TUSC7 deletion of uncertain clinical significance located in the region of the 3q13.31 deletion syndrome. All chromosomal aberrations were confirmed by real-time PCR in lymphocytes and detected in skin fibroblasts. The deletions were also found in the buccal epithelium. According to FISH analysis, 8% and 24% of the patient's lymphocytes and skin fibroblasts, respectively, had monosomy 22. CONCLUSIONS: We believe that a combination of 22q13.32-q13.33 deletion and monosomy 22 in a portion of cells can better define the clinical phenotype of the patient. Importantly, the in vivo presence of monosomic cells indicates ring chromosome instability, which may favor karyotype correction that is significant for the development of chromosomal therapy protocols.

13.
Mol Neurobiol ; 55(8): 6533-6546, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29327201

ABSTRACT

Copy number variations (CNVs) of the human CNTN6 gene caused by megabase-scale microdeletions or microduplications in the 3p26.3 region are often the cause of neurodevelopmental disorders, including intellectual disability and developmental delay. Surprisingly, patients with different copy numbers of this gene display notable overlapping of neuropsychiatric symptoms. The complexity of the study of human neuropathologies is associated with the inaccessibility of brain material. This problem can be overcome through the use of reprogramming technologies that permit the generation of induced pluripotent stem (iPS) cells from fibroblasts and their subsequent in vitro differentiation into neurons. We obtained a set of iPS cell lines derived from a patient carrier of the CNTN6 gene duplication and from two healthy donors. All iPS cell lines displayed the characteristics of pluripotent cells. Some iPS cell lines derived from the patient and from healthy donors were differentiated in vitro by exogenous expression of the Ngn2 transcription factor or by spontaneous neural differentiation of iPS cells through the neural rosette stage. The obtained neurons showed the characteristics of mature neurons as judged by the presence of neuronal markers and by their electrophysiological characteristics. Analysis of allele-specific expression of the CNTN6 gene in these neuronal cells by droplet digital PCR demonstrated that the level of expression of the duplicated allele was significantly reduced compared to that of the wild-type allele. Importantly, according to the sequencing data, both copies of the CNTN6 gene, which were approximately 1 Mb in size, showed no any additional structural rearrangements.


Subject(s)
Alleles , Chromosome Duplication/genetics , Chromosomes, Human, Pair 3/genetics , Contactins/genetics , Gene Expression Regulation , Induced Pluripotent Stem Cells/pathology , Intellectual Disability/genetics , Neurons/pathology , Adolescent , Adult , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Intellectual Disability/physiopathology , Karyotyping , Mice, SCID , Nerve Tissue Proteins/metabolism , Neurons/metabolism
14.
Oncotarget ; 8(37): 61163-61180, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28977854

ABSTRACT

Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.

15.
Sci Rep ; 7: 41268, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120895

ABSTRACT

The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected. We also identified eight copy-neutral changes (cn-LOHs) > 1.5 Mb in paired arterial samples in 4 of 10 individuals. The frequencies of the two gains located in the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions were evaluated in 33 paired arteries and blood samples. Two patients contained the gain in 10q24.31 (ERLIN1) and one patient contained the gain in 12q24.11 (UNG, ACACB) that affected only the blood DNA. An additional two patients harboured these CNVs in both the arteries and blood. In conclusion, we discovered and confirmed a gain of the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions in patients with coronary artery disease and metabolic comorbidity. Analysis of DNA extracted from blood indicated a possible somatic origin for these CNVs.


Subject(s)
Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Genomics , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Comorbidity , Comparative Genomic Hybridization , Coronary Artery Disease/genetics , DNA Copy Number Variations/genetics , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction
16.
Am J Med Genet A ; 170(8): 2089-96, 2016 08.
Article in English | MEDLINE | ID: mdl-27288323

ABSTRACT

The widespread application of array comparative genomic hybridization (aCGH) has provided new insights into the clinical significance of copy number variations (CNVs) in the human genome. Many microdeletion syndromes have recently been linked to corresponding reciprocal microduplication syndromes related to CNVs in the same chromosomal regions. However, the extent of CNVs may not be restricted to only microduplications but may also include microtriplications or even quadruplications. 4q21 microdeletion syndrome is one of these recently described syndromes. The phenotype includes growth restriction, neonatal hypotonia, severe developmental delay, absent or delayed speech, and distinct facial features. The minimal critical deleted region, which is 1.3 Mb in size, contains the PRKG2, RASGEF1B, HNRNPD, HNRPDL, and ENOPH1 genes. Here, we report a 5.4-year-old girl with developmental delay, absence of speech, muscular hypertension, macrocephaly, a broad forehead, frontal bossing, relatively elongated extremities, a vascular malignant hemangioma in anamnesis, and elongated sigmoid colon. aCGH revealed a microtriplication at 4q21.21-q21.22 that was 1.61 Mb in size. This de novo microtriplication included nine genes (BMP3, PRKG2, RASGEF1B, HNRNPD, HNRPDL, ENOPH1, TMEM150C, LINC00575, and SCD5) and overlapped with the minimal critical region for 4q21 microdeletion syndrome. Some clinical features of the patient were similar to those of 4q21 microdeletion (macrocephaly, frontal bossing, developmental delay, absence of speech, and anxiety), whereas others were mirrored (elongated extremities and muscular hypertension). The first identified case of a de novo microtriplication at 4q21.21-q21.22 emphasizes the clinical significance of CNVs at 4q21 for patients with developmental delay and absence of speech. © 2016 Wiley Periodicals, Inc.


Subject(s)
Chromosomes, Human, Pair 4 , Colon, Sigmoid/abnormalities , Developmental Disabilities/genetics , Hemangioma/genetics , Phenotype , Speech Disorders/genetics , Trisomy , Child, Preschool , Chromosome Banding , Chromosome Deletion , Comparative Genomic Hybridization , DNA Copy Number Variations , Facies , Female , Genetic Association Studies , Hemangioma/diagnosis , Humans , Speech Disorders/diagnosis , Syndrome
17.
Biomed Hub ; 1(1): 1-11, 2016.
Article in English | MEDLINE | ID: mdl-31988885

ABSTRACT

BACKGROUND: The majority of miscarriages are sporadic; however, 1-5% of couples experience recurrent pregnancy loss (RPL). Approximately 50-60% of miscarriages result from chromosomal abnormalities. Currently, there are conflicting reports regarding the rates of chromosomal abnormalities between recurrent and sporadic pregnancy losses. METHODS: A retrospective comparative cytogenetic analysis of 442 RPL and 466 sporadic abortions (SA) was performed. Maternal age and medical background were evaluated, and chromosomal abnormality rates were compared between groups. RESULTS: The frequency of embryos with abnormal karyotypes was significantly higher in SA compared to RPL (56.7 and 46.6%, respectively), and abortions from women under 30 years of age were the main contributor to this difference. An age-dependent increase in the abnormal karyotype rate was observed in two groups of women - those with SA [53.0 and 70.1% for younger and older (≥35-year-old) mothers, respectively] and those with idiopathic RPL without any concomitant reproductive pathology (46.5 and 78.4% for younger and older mothers) - but not in the group of women with RPL associated with concomitant reproductive pathology. The incidence of recurrent abnormal karyotypes in subsequent miscarriages was significantly higher than random probability (odds ratio = 22.75). CONCLUSION: Our findings highlight the variability in the risk of aneuploidy in recurrent abortion.

19.
Gene ; 536(1): 145-50, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24291026

ABSTRACT

The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.


Subject(s)
Comparative Genomic Hybridization/methods , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Female , Humans , Male , Russia
20.
Mol Cytogenet ; 7(1): 97, 2014.
Article in English | MEDLINE | ID: mdl-25606055

ABSTRACT

BACKGROUND: Detection of submicroscopic chromosomal alterations in patients with a idiopathic intellectual disability (ID) allows significant improvement in delineation of the regions of the genome that are associated with brain development and function. However, these chromosomal regions usually contain several protein-coding genes and regulatory elements, complicating the understanding of genotype-phenotype correlations. We report two siblings with ID and an unrelated patient with atypical autism who had 3p26.3 microdeletions and one intellectually disabled patient with a 3p26.3 microduplication encompassing only the CNTN6 gene. RESULTS: Two 295.1-kb microdeletions and one 766.1-kb microduplication of 3p26.3 involving a single gene, CNTN6, were identified with an Agilent 60K array. Another 271.9-kb microdeletion of 3p26.3 was detected using an Affymetrix CytoScan HD chromosome microarray platform. The CHL1 and CNTN4 genes, although adjacent to the CNTN6 gene, were not affected in either of these patients. CONCLUSIONS: The protein encoded by CNTN6 is a member of the immunoglobulin superfamily and functions as a cell adhesion molecule that is involved in the formation of axon connections in the developing nervous system. Our results indicate that CNTN6 may be a candidate gene for ID.

SELECTION OF CITATIONS
SEARCH DETAIL
...