Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 51(2): 185-200, 2019 02.
Article in English | MEDLINE | ID: mdl-30431174

ABSTRACT

OBJECTIVES: The use of near-IR diode lasers for contact soft tissue surgery is attended by a risk of severe thermal damage of surrounding tissues due to the low cutting efficiency of these lasers. To increase the cutting efficiency of a near-IR lasers in contact surgery special tips (converters) which transform laser light to heat are used. The present in vivo study evaluated temperature dynamics and soft tissue cutting efficiency of 980 nm diode laser equipped with standard carbon- and novel erbium- and titanium-doped converters. MATERIALS AND METHODS: For in vitro treatment on soft tissue (chicken thigh), 980 nm diode laser was used. The radiation was delivered to the tissue by a quartz fiber with a core diameter of 400 ± 5 µm. The carbon-, erbium-, or titanium-doped converters were mounted at the fiber distal end. The converters temperature was measured by IR-sensor integrated into the laser radiation delivery system. The temperature dynamics of each converter during soft tissue treatment was evaluated. The converter was in contact with the soft tissue surface and moved across the surface of soft tissue with a speed of 1, 3, or 6 mm/s. The average power of laser radiation was 0.3, 1.0, or 4.0 W. The collateral thermal damage of treated soft tissues was evaluated using NTBC stain. The width and depth of coagulation and ablation zones of laser wounds was determined. The soft tissue cutting efficiency with different converters was calculated. RESULTS: The cutting efficiency, collateral damage, and converter temperature in contact with soft tissue change depending on the type of converter, the power of laser radiation and the converter movement speed along the tissue surface. Maximal converter temperature (1,980 ± 154 °C), at which a tissue cut takes place, was fixed for Ti-doped converter for laser power of 4.0 W and movement speed of 1 mm/s. Minimal converter temperature (540 ± 30 °C), at which a tissue cut takes place, was fixed for Ti-doped converter for laser power of 1.0 W and movement speed of 6 mm/s. Maximal depth of coagulation (0.72 ± 0.10 mm) was fixed for Ti-doped converter for laser power of 4.0 W and movement speed of 1 mm/s. Minimal depth of coagulation (0.11 ± 0.02 mm) was fixed for C-doped converter for laser power of 0.3 W and movement speed of 3 mm/s. Maximal cutting efficiency (0.57 mm3 /W) was fixed for Er-doped converter for laser power of 1.0 W and movement speed of 1 mm/s. Minimal cutting efficiency (0.02 mm3 /W) was fixed for C-doped converter for laser power of 4.0 W and movement speed of 6 mm/s. CONCLUSION: All three studied types of converters can be used for contact surgery of soft tissues by 980 nm diode laser. Er-doped and Ti-doped converters are more resistant to laser heating then C-doped converter, they dissect soft tissue more effectively. This will also expand the potential of everyday routine clinical procedures, making them safer, faster, and easier. These converters can be used in general surgery, plastic surgery, dermatology, angioplasty, dentistry, neurosurgery, etc. Lasers Surg. Med. 51:185-200, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Laser Therapy/methods , Thigh/surgery , Animals , Carbon , Chickens , Equipment Design , Erbium , In Vitro Techniques , Laser Therapy/instrumentation , Titanium
2.
Lasers Surg Med ; 47(9): 723-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26407937

ABSTRACT

BACKGROUND AND OBJECTIVES: Laser radiation is often used to provide micro and nanoparticle delivery into the skin for medical and cosmetic purposes. This technique inherently has limited speed and effective penetration. We proposed and investigated a new method of rapid delivery of solid microparticles, nanoparticles and liquids into tissue through multiple microchannels created by a fractional laser microablation (FLMA) using Er:YAG-laser. The dependence of microchannel depth on laser pulse temporal structure and number of pulses and dermal coloration changes are studied in this paper. STUDY DESIGN/MATERIALS AND METHODS: Microchannels created in the porcine skin in vitro by a fractional Er:YAG-laser were used to deliver Zirconium oxide (ZrO2) microparticles or hydrocortisone solution. Each laser pulse consisted of subpulses. Number of laser pulses (Np) and subpulses (Nsp) can be adjusted. The enhancement of delivery is expected due to hydrodynamic impact of laser pulse on the layer of the aqueous suspension of the particles or hydrocortisone solution placed on the skin surface. For color investigation, we used standard CIE Lab parameter analysis. RESULTS: The relationship between microchannel depth in the skin and number of laser pulses and subpulses was established. We found that free filling of microchannels with ZrO2-particle suspension has a low speed of ∼4 × 10(-5) mm/s. Particle delivery into microchannels induced by the hydrodynamic shock waves generated by Er:YAG-laser pulses is carried out with a high speed of 28.5 mm/s. We also found that skin color at ZrO2 -particle delivery differs from color of the intact skin, namely: the parameter L, which characterizes the "lightness" increased by 9 ± 1%; parameter a, which characterizes the "redness" decreased by 38 ± 4%; and parameter b, which characterizes the "yellowness" decreased by 21 ± 2%. The effective delivery of hydrocortisone was demonstrated using fluorescence method technique. CONCLUSION: Multi-beam laser-induced hydrodynamic shock waves generated by Er:YAG-laser pulses on the layer of the aqueous suspension of the particles or solution of a high molecular weight drug placed on the skin can be used for their rapid delivery into the skin.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Drug Carriers/administration & dosage , High-Energy Shock Waves , Hydrocortisone/administration & dosage , Lasers, Solid-State , Nanoparticles/administration & dosage , Administration, Cutaneous , Animals , Hydrodynamics , Swine , Tissue Culture Techniques
3.
Lasers Surg Med ; 47(5): 411-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25920077

ABSTRACT

BACKGROUND AND OBJECTIVES: Uncovering implants with lasers, while bloodless, has been associated with a risk of implant and bone overheating. The present study evaluated the effect of using a new generation of high-power diode lasers on the temperature of a dental implant and the surrounding tissues using an in vitro model. STUDY DESIGN/MATERIALS AND METHODS: The implant temperature was measured at three locations using micro thermocouples. Collateral thermal damage of uncovered soft tissues was evaluated using NTBC stain. Implant temperature rise during and collateral thermal soft-tissue damage following implant uncovering with and without tissue air-cooling was studied using both the classic operational mode and the new thermo-optically powered (TOP) technology. RESULTS: For the classic surgical mode using a cork-initiated tip and constant laser power set at 3.4 W, the maximum temperature rise in the coronal and apical parts of the implant was 23.2 ± 4.1°Ð¡ and 9.5 ± 1.8°Ð¡, respectively, while 1.5 ± 0.5 mm of collateral thermal damage of the soft tissue surrounding the implant model occurred. Using the TOP surgical tip with constant laser power reduced implant overheating by 30%; collateral thermal soft-tissue damage was 0.8 ± 0.2 mm. Using the TOP surgical mode with a tip temperature setting of 800°C and air-cooling reduced the implant temperature rise by more than 300%, and only 0.2 ± 0.1 mm of collateral thermal soft-tissue damage occurred, typical for optimized CO2 laser surgery. Furthermore, use of the new generation diode technology (TOP surgical mode) appeared to reduce the time required for implant uncovering by a factor of two, compared to the standard surgical mode. CONCLUSIONS: Use of the new generation diode technology (TOP surgical mode) may significantly reduce overheating of dental implants during uncovering and seems to be safer for the adjacent soft and hard tissues. Use of such diode lasers with air-cooling can radically reduce the rise in implant temperatures (by more than three times), potentially making this technology safe and effective for implant uncovering.


Subject(s)
Burns/prevention & control , Dental Implants , Laser Therapy/instrumentation , Lasers, Semiconductor/therapeutic use , Mouth Mucosa/injuries , Animals , Burns/etiology , Cattle , Laser Therapy/adverse effects , Models, Biological , Models, Dental , Soft Tissue Injuries/etiology , Soft Tissue Injuries/prevention & control , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...