Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422982

ABSTRACT

This article presents the results of steel-sheet lap-joint-welding using laser beam radiation. The use of a laser beam and keyhole effect for deep material penetration in lap joint welding was presented. Thermodynamic mechanism of laser welding is related to material properties and process parameters. Estimation of welding parameters and joint properties' analysis was performed through numerical simulation. The article presents a possibility of modeling laser lap-joint welding by using Simufact Welding software based on Marc solver and thermo-mechanical solution. Numerical calculation was performed for surface and conical volumetric heat sources simulating laser absorption and keyhole effect during steel sheet welding. Thermo-mechanical results of fusion zone (FZ), heat-affected zone (HAZ) and phase transformations calculated in numerical simulation were analyzed. The welding parameters for partial sealed joint penetration dedicated for gas piping installations were estimated from the numerical analysis. Low-carbon constructional steel was used for numerical and experimental analyses. A trial joint based on the estimated parameters was prepared by using a CO2 laser. Numerical and experimental results in the form of hardness distributions and weld geometry were compared. Metallographic analysis of the obtained weld was presented, including crystallographic structures and inclusions in the cross section of the joint.

2.
Materials (Basel) ; 13(24)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419356

ABSTRACT

This paper presents the results of laser welding of dissimilar joints, where low-carbon and stainless steels were welded inthe lap joint configuration. Performed welding of austenitic and ferritic-pearlitic steels included a sealed joint, where only partial penetration of lower material was obtained.The authors presented acomparative study of the joints under different configurations. The welding parameters for the assumed penetration were estimated via anumericalsimulation. Moreover, a stress-strain analysis was performed based on theestablished model. Numerical analysis showed significant differences in joint properties, therefore, further study was conducted. Investigation of the fusion mechanism in the obtained joints wascarried out using electron dispersive spectroscopy (EDS) and metallurgical analysis. The study of the lap joint under different configurations showed considerable dissimilarities in stress-strain distribution and relevant differences in the fusion zone structure. The results showed advantages of using stainless steel as the upper material of a microstructure, and uniform chemical element distribution and stress analysis is considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...