Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 54(2): 525-33, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27567857

ABSTRACT

Cyclin-dependent kinase 5 (CDK5) is a multifunctional serine/threonine kinase that regulates a large number of neuronal processes essential for nervous system development and function with its activator p35 CDK5R1. Upon neuronal insults, p35 is proteolyzed and cleaved to p25 producing deregulation and hyperactivation of CDK5 (CDK5/p25), implicated in tau hyperphosphorylation, a pathology in some neurodegenerative diseases. A truncated, 24 amino acid peptide, p5, derived from p35 inhibits the deregulated CDK5 phosphotransferase activity and ameliorates Alzheimer's disease (AD) phenotypes in AD model mice. In the present study, we have screened a diverse panel of 70 human protein kinases for their sensitivities to p5, and a subset of these to p35. At least 16 of the tested protein kinases exhibited IC50 values that were 250 µM or less, with CAMK4, ZAP70, SGK1, and PIM1 showing greater sensitivity to inhibition by p5 than CDK5/p35 and CDK5/p25. In contrast, the p5 peptide modestly activated LKB1 and GSK3ß. A sub set of kinases screened against p35 showed that activity of CAMK4 in the absence of calcium and calmodulin was also markedly inhibited by p35. The Cyclin Y-dependent kinases PFTK1 (CDK14) and PCTK1 (CDK16) were activated by p35 at least 10-fold in the absence of Cyclin Y and by approximately 50% in its presence. These findings provide additional insights into the mechanisms of action for p5 and p35 in the regulation of protein phosphorylation in the nervous system.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Gene Expression Profiling/methods , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Amino Acid Sequence , Cyclin-Dependent Kinase 5/genetics , Humans , Nerve Tissue Proteins/genetics , Peptide Fragments/genetics , Protein Kinases/genetics , Protein Kinases/metabolism
2.
J Alzheimers Dis ; 48(4): 1009-17, 2015.
Article in English | MEDLINE | ID: mdl-26444778

ABSTRACT

Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles, it is well documented that cyclin-dependent kinase 5 (CDK5), a critical neuronal protein kinase in nervous system development, function, and survival, when deregulated and hyperactivated induces Alzheimer's disease (AD) and amyotrophic lateral sclerosis and Parkinson's disease-like phenotypes in mice. In a recent study, we demonstrated that p5, a small, truncated fragment of 24 amino acid residues derived from the CDK5 activator protein 35 (NCK5A, p35), selectively inhibited deregulated CDK5 hyperactivity and ameliorated AD phenotypes in model mice. In this study, we identified the most inhibitory elements in the p5 peptide fragment. Each amino acid residue in p5 was systematically replaced with its homologous residues that may still be able to functionally substitute. The effects of these p5 peptide analogs were studied on the phosphotransferase activities of CDK5/p35, CDK5/p25, ERK1, and GSK3ß. The mimetic p5 peptide (A/V substitution at the C-terminus of the peptide) in the sequence, KNAFYERALSIINLMTSKMVQINV (p5-MT) was the most effective inhibitor of CDK5 kinase activity of 79 tested mimetic peptides including the original p5 peptide, KEAFWDRCLSVINLMSSKMLQINA (p5-WT). Replacement of the residues in C-terminus end of the peptide affected CDK5 phosphotransferase activity most significantly. These peptides were strong inhibitors of CDK5, but not the related proline-directed kinases, ERK1 and GSK3ß.


Subject(s)
Cyclin-Dependent Kinase 5/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Amino Acid Sequence , Animals , Cyclin-Dependent Kinase 5/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Mimicry , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Radioligand Assay , Recombinant Proteins/metabolism , Sf9 Cells
3.
Histochem Cell Biol ; 140(1): 23-32, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23793952

ABSTRACT

The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs.


Subject(s)
Intermediate Filaments/enzymology , Intermediate Filaments/pathology , Neurons/enzymology , Peptidylprolyl Isomerase/metabolism , Humans , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/physiopathology , Neurons/pathology , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...