Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neoplasma ; 70(3): 416-429, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37498074

ABSTRACT

Glycosylation is a posttranslational modification of proteins affecting numerous cellular functions. A growing amount of evidence confirms that aberrant glycosylation is involved in pathophysiological processes, including tumor development and progression. Carbonic anhydrase IX (CAIX) is a transmembrane protein whose expression is strongly induced in hypoxic tumors, which makes it an attractive target for anti-tumor therapy. CAIX facilitates the maintenance of intracellular pH homeostasis through its catalytic activity, which is linked with extracellular pH acidification promoting a more aggressive phenotype of tumor cells. The involvement of CAIX in destabilizing cell-cell contacts and the focal adhesion process also contributes to tumor progression. Previous research shows that CAIX is modified with N-glycans, O-glycans, and glycosaminoglycans (GAG). Still, the impact of glycosylation on CAIX functions has yet to be fully elucidated. By preparing stably transfected cells expressing mutated forms of CAIX, unable to bind glycans at their defined sites, we have attempted to clarify the role of glycan structures in CAIX functions. All three types of prepared mutants exhibited decreased adhesion to collagen. By surface plasmon resonance, we proved direct binding between CAIX and collagen. Cells lacking glycosaminoglycan modification of CAIX also showed reduced migration and invasion, indicating CAIX glycosaminoglycans' involvement in these processes. Analysis of signaling pathways affected by the loss of GAG component from CAIX molecule revealed decreased phosphorylation of c-Jun, of p38α kinase, focal adhesion kinase, and reduced level of heat shock protein 60 in cells cultured in hypoxia. Cells expressing CAIX without GAG exhibited increased metabolon formation and increased extracellular pH acidification. We also observed reduced CAIX GAG glycans in the inflammatory environment in hypoxia, pathophysiological conditions reflecting in vivo tumor microenvironment. Understanding the glycan involvement in the characteristics and functions of possible targets of cancer treatment, such as cell surface localized CAIX, could improve the therapy, as many drugs target glycan parts of a protein.


Subject(s)
Antigens, Neoplasm , Biomarkers, Tumor , Humans , Antigens, Neoplasm/genetics , Biomarkers, Tumor/metabolism , Carbonic Anhydrase IX/metabolism , Cell Line, Tumor , Glycosaminoglycans , Glycosylation , Hypoxia
2.
Am J Pathol ; 184(4): 953-965, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24518567

ABSTRACT

Medullary thyroid carcinoma is a relatively rare tumor with poor prognosis and therapy response. Its phenotype is determined by both genetic alterations (activating RET oncoprotein) and physiological stresses, namely hypoxia [activating hypoxia-inducible factor (HIF)]. Here, we investigated the cooperation between these two mechanisms. The idea emerged from the immunohistochemical analysis of carbonic anhydrases (CA) IX and XII expression in thyroid cancer. Although CAXII was present in all types of thyroid carcinomas, CAIX, a direct HIF target implicated in tumor progression, was associated with aggressive medullary and anaplastic carcinomas, and its expression pattern in medullary thyroid carcinomas suggested contribution of both hypoxic and oncogenic signaling. Therefore, we analyzed the CA9 promoter activity in transfected tumor cells expressing RET and/or the HIF-α subunit. We showed that overexpression of both wild-type and mutant RET can increase the CA9 promoter activity induced by HIF-1 (but not HIF-2) in hypoxia. Similar results were obtained with another HIF-1-regulated promoter derived from the lactate dehydrogenase A gene. Moreover, inhibition of the major kinase pathways, which transmit signals from RET and regulate HIF-1, abrogated their cooperative effect on the CA9 promoter. Thus, we brought the first experimental evidence for the crosstalk between RET and HIF-1 that can explain the increased expression of CAIX in medullary thyroid carcinoma and provide a rationale for therapy simultaneously targeting both pathways.


Subject(s)
Antigens, Neoplasm/metabolism , Carbonic Anhydrases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Signal Transduction , Thyroid Neoplasms/metabolism , Blotting, Western , Carbonic Anhydrase IX , Carcinoma, Neuroendocrine , Cell Line, Tumor , Humans , Immunohistochemistry , RNA Interference , Real-Time Polymerase Chain Reaction , Receptor Cross-Talk/physiology , Signal Transduction/physiology , Transfection
3.
Oncol Lett ; 5(1): 191-197, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23255918

ABSTRACT

Carbonic anhydrase IX (CA IX) is regarded as one of the most prominent markers of tumor hypoxia with potential to serve as a diagnostic biomarker, prognostic indicator as well as tumor therapeutic target. The aim of the present study was to perform an in-depth analysis of CA IX expression in blood and tissue samples and to evaluate the significance of CA IX status for different renal cell carcinomas (RCCs). The expression of CA IX was determined in blood and tissue samples from 74 kidney cancer patients using reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), Western blotting (WB) and immunohistochemistry (IHC). The CA IX status was correlated with RCC type and tumor stage. IHC and WB provided evidence for a significantly higher expression of CA IX in clear cell RCC (CCRCC) specimens compared to other RCCs. RT-PCR assay revealed that 32.42% of all RCC patients possess CA9-positive cells in peripheral blood and three-quarters of CA9-positive patients were diagnosed with CCRCC. When the patients were subdivided according to tumor stage, decreased positivity was observed with higher tumor stage (50% in T1 vs. 17% in T3). Serum CA IX levels determined by ELISA were significantly higher in CCRCC patients than in non-CCRCC. A significant association between s-CA IX and CCRCC tumor stage was also determined (T1-87.51 vs. T3-341.98 pg/ml, p=0.046). We demonstrated that the CA IX expression profiles in blood and tissue samples from 74 kidney cancer patients are closely correlated with their histological subtypes. This is the first study reporting CA IX expression in blood and tissue samples from kidney cancer patients determined by four different methods.

4.
J Biol Chem ; 287(5): 3392-402, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22170054

ABSTRACT

Carbonic anhydrase IX (CA IX) is a hypoxia-induced cell surface enzyme expressed in solid tumors, and functionally involved in acidification of extracellular pH and destabilization of intercellular contacts. Since both extracellular acidosis and reduced cell adhesion facilitate invasion and metastasis, we investigated the role of CA IX in cell migration, which promotes the metastatic cascade. As demonstrated here, ectopically expressed CA IX increases scattering, wound healing and transwell migration of MDCK cells, while an inactive CA IX variant lacking the catalytic domain (ΔCA) fails to do so. Correspondingly, hypoxic HeLa cells exhibit diminished migration upon inactivation of the endogenous CA IX either by forced expression of the dominant-negative ΔCA variant or by treatment with CA inhibitor, implying that the catalytic activity is indispensable for the CA IX function. Interestingly, CA IX improves cell migration both in the absence and presence of hepatocyte growth factor (HGF), an established inducer of epithelial-mesenchymal transition. On the other hand, HGF up-regulates CA IX transcription and triggers CA IX protein accumulation at the leading edge of lamellipodia. In these membrane regions CA IX co-localizes with sodium bicarbonate co-transporter (NBCe1) and anion exchanger 2 (AE2) that are both components of the migration apparatus and form bicarbonate transport metabolon with CA IX. Moreover, CA IX physically interacts with AE2 and NBCe1 in situ, as shown here for the first time. Thus, our findings suggest that CA IX actively contributes to cell migration via its ability to facilitate ion transport and pH control at protruding fronts of moving cells.


Subject(s)
Anion Transport Proteins/metabolism , Antigens, Neoplasm/biosynthesis , Antiporters/metabolism , Carbonic Anhydrases/biosynthesis , Cell Movement/physiology , Gene Expression Regulation, Enzymologic/physiology , Pseudopodia/metabolism , Sodium-Bicarbonate Symporters/metabolism , Animals , Anion Transport Proteins/genetics , Antigens, Neoplasm/genetics , Antiporters/genetics , Bicarbonates/metabolism , Carbonic Anhydrase IX , Carbonic Anhydrases/genetics , Cell Hypoxia/physiology , HeLa Cells , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Hydrogen-Ion Concentration , Ion Transport/physiology , Protein Structure, Tertiary , Pseudopodia/genetics , SLC4A Proteins , Sodium-Bicarbonate Symporters/genetics , Up-Regulation/physiology
5.
Anticancer Res ; 30(9): 3661-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20944151

ABSTRACT

Overexpression of P-glycoprotein (P-gp), a plasma membrane drug transporter (ABCB1, a member of the ABC transporter family), is the most prevalent cause of multidrug resistance in cancer tissues. Lectin concanavalin A (ConA) induces massive cell death of L1210 leukemia cells (S). Cell sublines of L1210 in which P-gp overexpression was induced by selection with vincristine (R) or by stable transfection with a plasmid encoding full-length human P-gp (T) were less sensitive to ConA. Both P-gp-positive cell lines exhibited typical P-gp-mediated multidrug resistance. Resistance of R and T cells to ConA was associated with lower binding of ConA as compared to S cells when analysed by the following methods: (i) SDS PAGE and electroblotting of proteins in the crude membrane fraction followed by detection with biotinylated ConA and avidin-peroxidase, and (ii) fluorescent cytometry or confocal microscopy of the intact cells with surfaces labeled by FITC-ConA. These data indicated that the presence of P-glycoprotein in L1210 cells independently of the mode of its expression induced down-regulation of cell surface saccharide targets of ConA. Therefore, this feature may be considered as a secondary cellular response to P-glycoprotein expression.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Membrane/metabolism , Concanavalin A/metabolism , Drug Resistance, Neoplasm , Animals , Cell Line, Tumor , Cell Separation , Down-Regulation , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , Glycoproteins/metabolism , Humans , Immunoblotting , Mice , Microscopy, Confocal , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...