Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim Res ; 40(1): 23, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845041

ABSTRACT

BACKGROUND: The aim of the study was to develop a technique for quantitative determination of rat urine metabolites by HPLC-MS/MS, which can be used to search for biomarkers of acute intoxication with organophosphates (OPs). RESULTS: The content of metabolites in the urine of rats exposed to a single dose of paraoxon (POX1x); interval, twice daily administration of paraoxon (POX2x); exposure to 2-(o-cresyl)-4H-1, 3, 2-benzodioxaphosphorin-2-oxide and paraoxon (CBPOX) was investigated. New data were obtained on the content in the urine of intact rats as well as rats in 3 models of OP poisoning: 3-methylhistidine, threonine, creatine, creatinine, lactic acid, acetylcarnitine, inosine, hypoxanthine, adenine, 3-hydroxymethyl-butyrate and 2-hydroxymethyl-butyrate. CONCLUSIONS: The proposed assay procedure is a simple and reliable tool for urine metabolomic studies. Within 1-3 days after OP exposure in all three models of acute intoxication, the concentration of metabolites in rat urine, with the exception of adenine, changes similarly and symmetrically, regardless of the method of poisoning modeling, in all three models of acute intoxication. Further studies are needed to determine the specificity and reliability of using urinary metabolite concentration changes as potential biomarkers of acute organophosphate intoxication.

2.
Int J Nanomedicine ; 13: 1471-1482, 2018.
Article in English | MEDLINE | ID: mdl-29559776

ABSTRACT

BACKGROUND: Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). METHODS: Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. RESULTS: CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T1 (spin-lattice relaxation time) and T2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 µg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T2 values (P<0.001). Subsequent histological studies proved the accumulation of the nanoparticles inside glioblastoma cells. CONCLUSION: Hybrid chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the delineation of the brain tumor. Due to a significant retention of the particles in the tumor an application of the CS-DX-SPIONs could not only improve the tumor imaging but also could allow a targeted delivery of chemotherapeutic agents.


Subject(s)
Brain Neoplasms/drug therapy , Chitosan/chemistry , Ferric Compounds/chemistry , Glioblastoma/drug therapy , Magnetite Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/pathology , Cell Communication , Glioblastoma/pathology , HeLa Cells , Humans , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/ultrastructure , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...