Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol ; 18(8): 955-65, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21867911

ABSTRACT

Bacterial resistance to known therapeutics has led to an urgent need for new chemical classes of antibacterial agents. To address this we have applied a Staphylococcus aureus fitness test strategy to natural products screening. Here we report the discovery of kibdelomycin, a novel class of antibiotics produced by a new member of the genus Kibdelosporangium. Kibdelomycin exhibits broad-spectrum, gram-positive antibacterial activity and is a potent inhibitor of DNA synthesis. We demonstrate through chemical genetic fitness test profiling and biochemical enzyme assays that kibdelomycin is a structurally new class of bacterial type II topoisomerase inhibitor preferentially inhibiting the ATPase activity of DNA gyrase and topoisomerase IV. Kibdelomycin is thus the first truly novel bacterial type II topoisomerase inhibitor with potent antibacterial activity discovered from natural product sources in more than six decades.


Subject(s)
Actinomycetales/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/isolation & purification , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Models, Molecular , Pyrroles/isolation & purification , Pyrrolidinones/isolation & purification , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Topoisomerase II Inhibitors/isolation & purification
2.
J Antibiot (Tokyo) ; 63(8): 512-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20664605

ABSTRACT

Bacterial resistance to antibiotics, particularly to multiple antibiotics, is becoming a cause for significant concern. The only really viable course of action to counter this is to discover new antibiotics with novel modes of action. We have recently implemented a new antisense-based chemical genetic screening technology to accomplish this goal. The discovery and antibacterial activity of coelomycin, a fully substituted 2,6-dioxo pyrazine, illustrates the application of the Staphylococcus aureus fitness test strategy to natural products discovery.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Ascomycota/metabolism , Pyrazines/isolation & purification , Pyrazines/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/chemistry , Ascomycota/isolation & purification , Drug Evaluation, Preclinical/methods , Humans , Juniperus/microbiology , Magnetic Resonance Spectroscopy , Molecular Structure , Pyrazines/chemistry
3.
Chem Biol ; 16(8): 826-36, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19716473

ABSTRACT

The emergence of drug-resistant bacteria coupled with the limited discovery of novel chemical scaffolds and druggable targets inspires new approaches to antibiotic development. Here we describe a chemical genomics strategy based on 245 Staphylococcus aureus antisense RNA strains, each engineered for reduced expression of target genes essential for S. aureus growth. Attenuation of gene expression can sensitize cells to compounds that inhibit the activity of a gene product or associated process. Pools of strains grown competitively in the presence of bioactive compounds generate characteristic profiles of strain sensitivities reflecting compound mechanism of action. Here, we validate this approach with a structurally and mechanistically diverse set of reference antibiotics and, in the accompanying paper in this issue of Chemistry & Biology (Huber et al., 2009), demonstrate its use in the discovery of new cell wall inhibitors.


Subject(s)
Anti-Bacterial Agents/pharmacology , RNA, Antisense/metabolism , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/chemistry , Cluster Analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phenotype , RNA Interference , Staphylococcus aureus/genetics
4.
Chem Biol ; 16(8): 837-48, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19716474

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial and community-acquired pathogen for which few existing antibiotics are efficacious. Here we describe two structurally related synthetic compounds that potentiate beta-lactam activity against MRSA. Genetic studies indicate that these agents target SAV1754 based on the following observations: (i) it has a unique chemical hypersensitivity profile, (ii) overexpression or point mutations are sufficient to confer resistance, and (iii) genetic inactivation phenocopies the potentiating effect of these agents in combination with beta-lactams. Further, we demonstrate these agents inhibit peptidoglycan synthesis. Because SAV1754 is essential for growth and structurally related to the recently reported peptidoglycan flippase of Escherichia coli, we speculate it performs an analogous function in S. aureus. These results suggest that SAV1754 inhibitors might possess therapeutic potential alone, or in combination with beta-lactams to restore MRSA efficacy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Indoles/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Peptidoglycan/chemistry , Piperidines/pharmacology , Anti-Bacterial Agents/chemistry , Carbapenems/chemistry , Drug Synergism , Indoles/chemistry , Methicillin-Resistant Staphylococcus aureus/genetics , Peptidoglycan/metabolism , Piperidines/chemistry , RNA Interference , RNA, Antisense/metabolism
5.
J Biomol Screen ; 11(6): 704-11, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16844965

ABSTRACT

Several protocols for bacterial isolation and techniques for aerobic plate counting rely on the use of a spiral plater to deposit concentration gradients of microbial suspensions onto a circular agar plate to isolate colony growth. The advantage of applying a gradient of concentrations across the agar surface is that the original microbiological sample can be applied at a single concentration rather than as multiple serial dilutions. The spiral plater gradually dilutes the sample across a compact area and therefore saves time preparing dilutions and multiple agar plates. Commercial spiral platers are not automated and require manual sample loading. Dispensing of the sample volume and rate of gradients are often very limited in range. Furthermore, the spiral sample application cannot be used with rectangular microplates. Another limitation of commercial spiral platers is that they are useful only for dilute, filtered suspensions and cannot plate suspensions of coarse organic particles therefore precluding the use of many kinds of microorganism-containing substrata. An automated agar plate spreader capable of processing 99 rectangular microplates in unattended mode is described. This novel instrument is capable of dispensing discrete volumes of sample in a linear pattern. It can be programmed to dispense a sample suspense at a uniform application rate or across a decreasing concentration gradient.


Subject(s)
Microbiological Techniques/instrumentation , Specimen Handling/instrumentation , Agar , Automation , Culture Media , Reference Standards
6.
J Biomol Screen ; 9(8): 663-70, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15637029

ABSTRACT

Constantly improving biological assay development continues to drive technological requirements. Recently, a specification was defined for capturing white light and fluorescent images of agar plates ranging in size from the NUNC Omni tray (96-well footprint, 128 x 85 mm) to the NUNC Bio Assay Dish (245 x 245 mm). An evaluation of commercially available products failed to identify any system capable of fluorescent macroimaging with discrete wavelength selection. To address the lack of a commercially available system, a custom imaging system was designed and constructed. This system provides the same capabilities of many commercially available systems with the added ability to fluorescently image up to a 245 x 245 mm area using wavelengths in the visible light spectrum.


Subject(s)
Image Processing, Computer-Assisted/instrumentation , Microscopy, Fluorescence/instrumentation , Biological Assay/instrumentation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...