Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-453127

ABSTRACT

The COVID-19 pandemic resulted from global infection by the SARS-CoV-2 coronavirus and rapidly emerged as an urgent health issue requiring effective treatments. To initiate infection, the Spike protein of SARS-CoV-2 requires proteolytic processing mediated by host proteases. Among the host proteases proposed to carry out this activation is the cysteine protease cathepsin L. Inhibiting cathepsin L has been proposed as a therapeutic strategy for treating COVID-19. SLV213 (K777) is an orally administered small molecule protease inhibitor that exhibits in vitro activity against a range of viruses, including SARS-CoV-2. To confirm efficacy in vivo, K777 was evaluated in an African green monkey (AGM) model of COVID-19. A pilot experiment was designed to test K777 in a prophylactic setting, animals were pre-treated with 100mg/kg K777 (N=4) or vehicle (N=2) before inoculation with SARS-CoV-2. Initial data demonstrated that K777 treatment reduced pulmonary pathology compared to vehicle-treated animals. A second study was designed to test activity in a therapeutic setting, with K777 treatment (33 mg/kg or 100 mg/kg) initiated 8 hours after exposure to the virus. In both experiments, animals received K777 daily via oral gavage for 7 days. Vehicle-treated animals exhibited higher lung weights, pleuritis, and diffuse alveolar damage. In contrast, lung pathology was reduced in K777-treated monkeys, and histopathological analyses confirmed the lack of diffuse alveolar damage. Antiviral effects were further demonstrated by quantitative reductions in viral load of samples collected from upper and lower airways. These preclinical data support the potential for early SLV213 treatment in COVID-19 patients to prevent severe lung pathology and disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...