Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(3): 2200-2209, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929802

ABSTRACT

BACKGROUND: The continued development of new radiotherapy techniques requires dosimetry systems that satisfy increasingly rigorous requirements, such as high sensitivity, wide dose range, and high spatial resolution. An emerging requirement is the ability to read out doses in three dimensions (3D) with high precision and spatial resolution. A few dosimetry systems with 3D capabilities are available, but their application in a clinical workflow is limited for various reasons, primarily originating from their chemical nature. The search for a 3D dosimetry system with potential for clinical implementation is thus ongoing. PURPOSE: To demonstrate the capabilities of a novel optically-stimulated-luminescence (OSL)-based 3D dosimetry system capable of measuring radiation doses in clinically relevant volumes. METHODS: A laser-based readout system was used to measure dose distributions delivered by both photons and protons, utilizing the OSL from a 50 × 50 × 50 $50\times 50\times 50$  mm 3 $^3$ YSO:Ce crystal. A homogeneous treatment plan consisting of two opposing photon fields was used to establish an inhomogeneity correction map of the crystal response and demonstrated the accuracy and precision of the system. The crystal was additionally irradiated with a photon treatment plan consisting of three overlapping 10 × 10 $10\times 10$  mm 2 $^2$ fields delivered from different angles, and a proton treatment plan consisting of four pencil beams with energies 90 MeV ( × 2 $\times 2$ ), 115 MeV, and 140 MeV. The system abilities were quantified by comparing the 3D-resolved measurements to Monte Carlo simulations. RESULTS: The dose map reproducibility of the system was found to be within 2% including both statistical and systematic errors. The measurements yielded integrated doses from a volume of 50 × 50 × 40 $50\times 50\times 40$  mm 3 $^3$ with voxel volumes of just 0.28 × 0.28 × 0.50 $0.28\times 0.28\times 0.50$  mm 3 $^3$ . An excellent agreement between the 3D-resolved measurements and the simulations was found for both photon- and proton-irradiation. CONCLUSIONS: The capabilities of the devised system for measuring clinically relevant fields of photons and proton pencil beams within a clinically relevant volume were demonstrated. The system poses as a promising candidate for clinical applications, and enables future research in the field of OSL-based tissue-equivalent 3D dosimetry.


Subject(s)
Luminescence , Optically Stimulated Luminescence Dosimetry , Protons , Reproducibility of Results , Radiometry/methods
3.
Phys Med Biol ; 62(4): N73-N89, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28134130

ABSTRACT

Most solid-state detectors, including 3D dosimeters, show lower signal in the Bragg peak than expected, a process termed quenching. The purpose of this study was to investigate how variation in chemical composition of a recently developed radiochromic, silicone-based 3D dosimeter influences the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1 cm into the plateau) ranged from 2.2 to 3.4, compared to 4.3 using an ionization chamber. The dose response, and thereby the quenching, was predominantly influenced by the curing agent concentration, which determined the dosimeter's deformation properties. The dose response was found to be linear at all depths. All chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3D-dose-distributions from proton beams.


Subject(s)
Film Dosimetry/instrumentation , Imaging, Three-Dimensional/instrumentation , Linear Energy Transfer , Protons , Silicon/chemistry , Imaging, Three-Dimensional/methods , Monte Carlo Method , Radiation Dosage
4.
Acta Oncol ; 52(7): 1445-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23957684

ABSTRACT

BACKGROUND: The increasing complexity of radiotherapy (RT) has motivated research into three-dimensional (3D) dosimetry. In this study we investigate the use of 3D dosimetry with polymerizing gels and optical computed tomography (optical CT) as a verification tool for complex RT: dose painting and target tracking. MATERIALS AND METHODS: For the dose painting studies, two dosimeters were irradiated with a seven-field intensity modulated radiotherapy (IMRT) plan with and without dose prescription based on a hypoxia image dataset of a head and neck patient. In the tracking experiments, two dosimeters were irradiated with a volumetric modulated arc therapy (VMAT) plan with and without clinically measured prostate motion and a third with both motion and target tracking. To assess the performance, 3D gamma analyses were performed between measured and calculated stationary dose distributions. RESULTS: Gamma pass-rates of 95.3% and 97.3% were achieved for the standard and dose-painted IMRT plans. Gamma pass-rates of 91.4% and 54.4% were obtained for the stationary and moving dosimeter, respectively, while tracking increased the pass-rate for the moving dosimeter to 90.4%. CONCLUSIONS: This study has shown that the 3D dosimetry system can reproduce and thus verify complex dose distributions, also when influenced by motion.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Tomography, X-Ray Computed , Humans , Male , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
5.
Med Phys ; 39(12): 7232-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23231274

ABSTRACT

PURPOSE: Both temporal and thermal dependencies of the dose response have been observed in radiochromic dosimeters. As these dependencies may be influenced by the dose level, the present study investigates the temperature dependence during irradiation and the temporal change of the optical response following irradiation of radiochromic dosimeters at a range of doses. METHODS: Cuvette samples of the PRESAGE™ radiochromic dosimeter were irradiated within a dose range of 0-10 Gy at irradiation temperatures within 5-35 °C and postirradiation storage within 6-30 °C. The optical response due to irradiation was measured using a standard spectrophotometer and the data were analyzed in terms of thermal and temporal change. RESULTS: The initial dose response was linear over the applied dose range independent of irradiation temperature. However, the optical response to a specific dose increased exponentially with irradiation temperature corresponding to an activation energy of 0.114 ± 0.007 eV. The temporal change in dose response after irradiation consisted of an offset, an auto-oxidation rate with activation energy 0.84 ± 0.03 eV, and an initial exponential increase in optical response (1.6 ± 0.2 eV) followed by an exponential decrease in optical response (0.98 ± 0.08 eV). These contributions depended on both storage temperature and the dose given, leading to a nonlinear dose response with time at low storage temperatures and a high auto-oxidation rate at high storage temperatures. CONCLUSIONS: Thermal equilibration is important to the radiochromic dosimeter investigated due to an exponential change in dose response with irradiation temperature and a considerable postirradiation temporal change in response. For the dosimeter version investigated in this study, a compromise in storage temperature has to be made between increasing the nonlinearity of the dose response with time and inducing a high auto-oxidation rate.


Subject(s)
Film Dosimetry/instrumentation , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Refractometry/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Temperature , Time Factors
6.
Acta Oncol ; 50(6): 829-34, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21767181

ABSTRACT

BACKGROUND: The on-going development of both intensity-modulated radiotherapy (IMRT), including the more recent intensity-modulated arc therapy, as well as particle beam therapy, has created a clear need for accurate verification of dose distributions in three dimensions (3D). Presage™ is a new 3D dosimetry material that exhibits a radiochromic response when exposed to ionizing radiation. In this study we have 1) developed an improved optical set-up for measurements of changes in OD of Presage™ point dosimeters, 2) investigated the dose response of Presage™ for photons and carbon ions in the therapy range, 3) investigated the dose response of Presage™ for photons in the kGy range and 4) investigated the fading (i.e. bleaching) of Presage™ postirradiation. MATERIALS AND METHODS: Presage™ was examined in 1 × 1 × 4.5 cm(3) optical cuvettes; a cuvette holder assured accurate repositioning, and the optical setup included a reference detector to take into account laser intensity fluctuations. The cuvettes were measured pre- and postirradiation for a two week period. RESULTS: A linear response was observed between dose and optical response between 0 Gy and 100 Gy for γ-radiation from Co-60 and for carbon ions (both plateau and SOBP) from 0 to 20 Gy. The dosimeter was found to have a saturation dose of approximately 100 Gy for photons. A linear energy transfer (LET) effect was not observed in the dose response of different LET radiation. The postirradiation change in optical fading was found to be 0.5% ΔOD/day. CONCLUSIONS: Our study shows that Presage™ remains a dosimeter of interest for radiation therapy with other particles as well as photons in the therapy dose range.


Subject(s)
Carbon , Optics and Photonics , Phantoms, Imaging , Photons , Radiation Monitoring/instrumentation , Cobalt Radioisotopes , Dose-Response Relationship, Radiation , Humans , Radiometry , Water
7.
Med Phys ; 38(5): 2806-11, 2011 May.
Article in English | MEDLINE | ID: mdl-21776817

ABSTRACT

PURPOSE: The dose response of radiochromic dosimeters is based on radiation-induced chemical reactions and is thus likely to be thermally influenced. In this study we have therefore investigated the temperature dependence of the dose response for such dosimeters, regarding both irradiation and storage conditions. METHODS: Dosimeter samples in cuvettes were irradiated to 5 Gy. The temperature for the different cuvettes during irradiation and post-irradiation storage was varied in the range of 3-30 degrees C in order to quantify the temperature dependence of the dosimeter response. The optical properties of the dosimeter samples were measured using a spectrophotometer before irradiation as well as at several times after irradiation to quantify the temporal variation of dose response (expressed as the optical density change induced by irradiation) as a function of storage temperature. RESULTS: The measurements show considerable temperature dependencies of dose response both during irradiation and storage. Fit to an Arrhenius equation revealed an activation energy of 1.4 +/- 0.2 eV for the variation in irradiation temperature, indicating a contribution from a thermally activated process. Variation in dose response at different storage temperatures showed an exponential increase with time followed by a decrease in optical density. Exponential Arrhenius fits to rate constants gave activation energies of 1.7 +/- 0.2 eV for the increase in dose response and 2.3 +/- 0.5 eV for the subsequent decrease, in this case dominated by thermally activated processes. CONCLUSIONS: Due to the exponential dependencies, stabilization of the dosimeter during irradiation at low temperatures (e.g., 5 degrees C) is preferable in clinical use to optimize the accuracy of the dose response. In addition, a low storage temperature is recommended in order to minimize the post-irradiation temporal change in dose response and thereby increase the post-irradiation stability of the dosimeter. The measurements in this study show that if the observed temperature and temporal dependencies are not considered, this could potentially deteriorate the accuracy of the dosimeter.


Subject(s)
Radiometry/instrumentation , Semiconductors , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...