Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Med ; 46(6): e560-e566, 2018 06.
Article in English | MEDLINE | ID: mdl-29517549

ABSTRACT

OBJECTIVE: Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. DESIGN: Prospective comparative study. SETTING: General and cardiothoracic ICUs. PATIENTS: Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. CONCLUSIONS: In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.


Subject(s)
Glomerular Filtration Rate , Kidney/blood supply , Renal Circulation , Shock, Septic/physiopathology , Aged , Aged, 80 and over , Case-Control Studies , Female , Glomerular Filtration Rate/physiology , Humans , Kidney/metabolism , Kidney/physiopathology , Male , Middle Aged , Prospective Studies , Renal Circulation/physiology , Shock, Septic/metabolism , Young Adult
2.
Crit Care ; 21(1): 87, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28395663

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) occurs frequently after liver transplantation and is associated with the development of chronic kidney disease and increased mortality. There is a lack of data on renal blood flow (RBF), oxygen consumption, glomerular filtration rate (GFR) and renal oxygenation, i.e. the renal oxygen supply/demand relationship, early after liver transplantation. Increased insight into the renal pathophysiology after liver transplantation is needed to improve the prevention and treatment of postoperative AKI. We have therefore studied renal hemodynamics, function and oxygenation early after liver transplantation in humans. METHODS: Systemic hemodynamic and renal variables were measured during two 30-min periods in liver transplant recipients (n = 12) and post-cardiac surgery patients (controls, n = 73). RBF and GFR were measured by the renal vein retrograde thermodilution technique and by renal extraction of Cr-EDTA (= filtration fraction), respectively. Renal oxygenation was estimated from the renal oxygen extraction. RESULTS: In the liver transplant group, GFR decreased by 40% (p < 0.05), compared to the preoperative value. Cardiac index and systemic vascular resistance index were 65% higher (p < 0.001) and 36% lower (p < 0.001), respectively, in the liver transplant recipients compared to the control group. GFR was 27% (p < 0.05) and filtration fraction 40% (p < 0.01) lower in the liver transplant group. Renal vascular resistance was 15% lower (p < 0.05) and RBF was 18% higher (p < 0.05) in liver transplant recipients, but the ratio between RBF and cardiac index was 27% lower (p < 0.001) among the liver-transplanted patients compared to the control group. Renal oxygen consumption and extraction were both higher in the liver transplants, 44% (p < 0.01) and 24% (p < 0.05) respectively. CONCLUSIONS: Despite the hyperdynamic systemic circulation and renal vasodilation, there is a severe decline in renal function directly after liver transplantation. This decline is accompanied by an impaired renal oxygenation, as the pronounced elevation of renal oxygen consumption is not met by a proportional increase in renal oxygen delivery. This information may provide new insights into renal pathophysiology as a basis for future strategies to prevent/treat AKI after liver transplantation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02455115 . Registered on 23 April 2015.


Subject(s)
Hemodynamics/physiology , Liver Transplantation/adverse effects , Oxygen Consumption/physiology , Renal Circulation/physiology , Acute Kidney Injury/etiology , Acute Kidney Injury/physiopathology , Aged , Female , Glomerular Filtration Rate/physiology , Humans , Kidney/physiopathology , Linear Models , Male , Middle Aged , Statistics, Nonparametric , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...