Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37176392

ABSTRACT

This article aims to review a redesign approach of a student racing car's clutch lever component, which was topologically optimized and manufactured by Additive Manufacturing (AM). Finite Element Method (FEM) analysis was conducted before and after a Topology Optimization (TO) process in order to achieve equivalent stiffness and the desired safety factor for the optimized part. The redesigned clutch lever was manufactured by using AM-Selective Laser Melting (SLM) and printed from powdered aluminum alloy AlSi10Mg. The final evaluation of the study deals with the experimental test and comparison of the redesigned clutch lever with the existing part which was used in the previous racing car. Using TO as a main redesign tool and AM brought significant changes to the optimized part, especially the following: reduced mass of the component (10%), increased stiffness, kept safety factor above the 3.0 value and ensured the more aesthetic design and a good surface quality. Moreover, using TO and AM gave the opportunity to consolidate multi-part assembly into a single component manufactured by one manufacturing process that reduced the production time. The experimental results justified the simulation results and proved that even though the applied load was almost 1.5× higher than the assumed one, the maximum von Mises stress on the component was still below the yield limit of 220 MPa.

2.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955281

ABSTRACT

Today, Ni-Cr steel is used for advanced applications in the high-temperature and electrical industries, medical equipment, food industry, agriculture and is applied in food and beverage packaging and kitchenware, automotive or mesh. A study of input steel powder from various stages of the recycling process intended for 3D printing was conducted. In addition to the precise evaluation of the morphology, particle size and composition of the powders used for laser 3D printing, special testing and evaluation of the heat-treated powders were carried out. Heat treatment up to 950 °C in an air atmosphere revealed the properties of powders that can appear during laser sintering. The powders in the oxidizing atmosphere change the phase composition and the original FeNiCr stainless steel changes to a two-phase system of Fe3Ni and Cr2O3, as evaluated by X-ray diffraction analysis. Observation of the morphology showed the separation of the oxidic phase in the sense of a brittle shell. The inner part of the powder particle is a porous compact core. The particle size is generally reduced due to the peeling of the oxide shell. This effect can be critical to 3D printing processing, causing defects on the printed parts, as well as reducing the usability of the precursor powder and can also change the properties of the printed part.

3.
Polymers (Basel) ; 13(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800854

ABSTRACT

The polyamide (PA)-12 material used for additive manufacturing was studied in aspects of morphology and their structural properties for basic stages received during 3D laser printing. Samples were real, big-scale production powders. The structure of polymer was evaluated from the crystallinity point of view using XRD, FTIR, and DSC methods and from the surface properties using specific surface evaluation and porosity. Scanning electron microscopy was used to observe morphology of the surface and evaluate the particle size and shape via image analysis. Results were confronted with laser diffraction particles size measurement along with an evaluation of the specific surface area. Fresh PA12 powder was found as inhomogeneous in particle size of material with defective particles, relatively high specific surface, high lamellar crystallite size, and low crystallinity. The scrap PA12 crystallinity was about 2% higher than values for fresh PA12 powder. Particles had a very low, below 1 m2/g, specific surface area; particles sintered as twin particles and often in polyhedral shapes.

4.
J Nanosci Nanotechnol ; 19(5): 2717-2722, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501771

ABSTRACT

Fluidized bed porosity ɛ is a primary property of fluidized systems when determining the minimum floating velocity. The air flow rate in the fluidized bed (or in the fluid layer of the material) increases with diminishing bed porosity. This paper is devoted to porosity calculations for a fluidized bed consisting of spherical particles having different diameters (2, 4, 6, 8, 10 mm) and in differently shaped polygonal fluidized bed cells possessing different characteristic particle floating velocities. For testing purposes, porosity was experimentally measured and subsequently modelled by simulation using the Rocky code. Cells with regular triangular, tetragonal (square-shaped), pentagonal, hexagonal, heptagonal and circular cross sections were used for the experiment. All the cells possessed the same cross-section area S = 1256 mm². The weight of the spherical particle batch in the experiments was constant, 2 kg, for all of the fluidized bed cell cross section shapes described above.

5.
J Nanosci Nanotechnol ; 19(5): 2997-3001, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30501811

ABSTRACT

The present article deals with investigation of geometric properties of surface modified titanium white with the help of silica oxide by various methods of shape and size identification of clusters made by processing by fluidisation. For the purpose of the investigation of geometric properties the artificially made titanium oxide (titanium white) was processed by fluidisation with a defined percentage of silica oxide additive. The selected additive was represented by hydrophilic pyrogenic silica (micronised silica oxide), known under commercial name Aerosil 200, Aerosil R972 and hydrophilic pyrogenic metal oxide Aeroxide P25. The investigation began by image acquisition of the individual additives and the titanium white with scanning electron microscope and continued by investigation of clusters created by fluidisation in a vertical fluidisation cell using state-of-the-art methods of particle size identification analysis. The research was oriented toward the area of mutual impact of particles in the titanium white clusters with particles of additives.

SELECTION OF CITATIONS
SEARCH DETAIL
...