Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13964, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886461

ABSTRACT

Measuring viscosity in volumes smaller than a microliter is a challenging endeavor. A new type of microscopic viscometers is presented to assess the viscosity of Newtonian liquids. Micron-sized flexible polymer cantilevers are created by two-photon polymerization direct laser writing. Because of the low stiffness and high elasticity of the polymer material the microcantilevers exhibit pronounced Brownian motion when submerged in a liquid medium. By imaging the cantilever's spherically shaped end, these fluctuations can be tracked with high accuracy. The hydrodynamic resistance of the microviscometer is determined by fitting the power spectral density of the measured fluctuations with a theoretical frequency dependence. Validation measurements in water-glycerol mixtures with known viscosities reveal excellent linearity of the hydrodynamic resistance to viscosity, allowing for a simple linear calibration. The stand-alone viscometer structures have a characteristic size of a few tens of microns and only require a very basic external instrumentation in the form of microscopic imaging at moderate framerates (~ 100 fps). Thus, our results point to a practical and simple to use ultra-low volume viscometer that can be integrated into lab-on-a-chip devices.

2.
Phys Rev E ; 107(2-1): 024603, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932604

ABSTRACT

This study aims to examine experimental conditions in which active particles are forced by their surroundings to move forward and backward in a continuous oscillatory manner. The experimental design is based on using a vibrating self-propelled toyrobot called hexbug, which is placed inside a narrow channel closed on one end by a rigid moving wall. Using the end-wall velocity as a controlling factor, the main forward mode of the hexbug movement can be turned to mostly rearward mode. We investigate the bouncing hexbug motion on both experimental and theoretical grounds. The Brownian model of active particles with inertia is employed in the theoretical framework. The model itself uses a pulsed Langevin equation in order to simulate abrupt changes in velocity that mimic hexbug propulsion in the moments when its legs make contact with the base plate. Significant directional asymmetry is caused by the legs bending backward. We demonstrate that the simulation successfully reproduces the experimental characteristics of hexbug motion after regressing the spatial and temporal statistical characteristics, especially when directional asymmetry is under consideration.

3.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34835725

ABSTRACT

Photopolymer nanowires prepared by two-photon polymerization direct laser writing (TPP-DLW) are the building blocks of many microstructure systems. These nanowires possess viscoelastic characteristics that define their deformations under applied forces when operated in a dynamic regime. A simple mechanical model was previously used to describe the bending recovery motion of deflected nanowire cantilevers in Newtonian liquids. The inverse problem is targeted in this work; the experimental observations are used to determine the nanowire physical characteristics. Most importantly, based on the linear three-parameter solid model, we derive explicit formulas to calculate the viscoelastic material parameters. It is shown that the effective elastic modulus of the studied nanowires is two orders of magnitude lower than measured for the bulk material. Additionally, we report on a notable effect of the surrounding aqueous glucose solution on the elasticity and the intrinsic viscosity of the studied nanowires made of Ormocomp.

SELECTION OF CITATIONS
SEARCH DETAIL
...