Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(11): 1393, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906283

ABSTRACT

Currently, there is a lack of research directly comparing the precision of automatic weighing systems and manual weighing in the context of particulate matter (PM) filter equilibration and measurements under different humidity conditions. During experimental measurements, three different types of PM-loaded filters were weighed using manual and automatic balances. During manual weighing, every filter was weighed twice in three different relative humidity conditions. The same procedure was done using an automated weighing system. In most cases, it was found that under relative humidities in the range of 30-55% RH, the manual and automated methods can be treated as referential. Regarding device stability, very slight but overall better precision was found for 30% RH, suggesting that 40 CFR Part 50, Appendix L requirements regarding conditioning humidity (30-40% RH) seem more suitable than those presented in the PN-EN 12341:2014 standard (45-50% RH). Understanding the effects of the influence of the RH% on PM mass measurements is a matter of great importance, because water vapor condensed on a filter can affect the particulate matter concentrations. This is especially important in areas where regulatory limits are exceeded. Calculation of uncertainty in the PM mass measurements is therefore crucial for determining the actual sample mass and improving air monitoring practices. In a nutshell, the experimental results obtained clearly describe how changing RH% conditions affect the PM weighing precision during manual and automated measurements.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Humidity , Air Pollutants/analysis , Environmental Monitoring/methods
2.
Article in English | MEDLINE | ID: mdl-32664556

ABSTRACT

This study concerns the concentrations of gaseous and particle-bound mercury present in ambient air of two Polish sites, differing in terms of emission structure, and the estimation of inhalation risks related to those Hg species. The measurements of total gaseous mercury (TGM) and PM2.5-bound mercury (PBM) were performed at an urban station in Zabrze and a rural station in Zloty Potok, in 2014-2015. Both sites are located in Silesia, considered one of the European air pollution hot-spots. TGM was measured on-line (Tekran 2537). PM2.5 samples were taken with the use of low volume samplers. Hg contents in PM were determined by the CVAAS method following thermal decomposition. The median concentrations of TGM and PBM in Zabrze were 2.48 ng m-3 and 37.87 pg m-3, respectively; meanwhile in Zloty Potok, these were 1.69 ng m-3 and 27.82 pg m-3, respectively. Clearly, seasonal variability of TGM and PBM concentrations were observed, reflecting the importance of Hg and PM emissions from coal combustion for power and heating purposes. Health risk assessment was performed using a deterministic approach by the most conservative exposure scenario. The obtained HQ ratios and the cumulative HI indexes were below the limit value (<1). This means an unlikely health hazard due mercury inhalation.


Subject(s)
Air Pollutants/analysis , Inhalation Exposure/adverse effects , Mercury/adverse effects , Coal , Environmental Monitoring , Gases , Humans , Mercury/analysis , Poland , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...