Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
2.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38549269

ABSTRACT

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Subject(s)
Biodiversity , Ecosystem , Animals , Europe , Crops, Agricultural , Agriculture/methods
3.
Animals (Basel) ; 14(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338069

ABSTRACT

Wildlife crossings are implemented in many countries to facilitate the dispersal of animals among habitats fragmented by roads. However, the efficacy of different types of habitat corridors remains poorly understood. We used a comprehensive sampling regime in two lowland dipterocarp forest areas in peninsular Malaysia to sample pairs of small mammal individuals in three treatment types: (1) viaduct sites, at which sampling locations were separated by a highway but connected by a vegetated viaduct; (2) non-viaduct sites, at which sampling locations were separated by a highway and not connected by a viaduct; and (3) control sites, at which there was no highway fragmenting the forest. For four small mammal species, the common tree shrew Tupaia glis, Rajah's spiny rat Maxomys rajah, Whitehead's spiny rat Maxomys whiteheadi and dark-tailed tree rat Niviventer cremoriventer, we used genome-wide markers to assess genetic diversity, gene flow and genetic structure. The differences in genetic distance across sampling settings among the four species indicate that they respond differently to the presence of highways and viaducts. Viaducts connecting forests separated by highways appear to maintain higher population connectivity than forest fragments without viaducts, at least in M. whiteheadi, but apparently not in the other species.

5.
Oecologia ; 204(1): 147-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38151651

ABSTRACT

Functional trait ecology has the potential to provide generalizable and mechanistic predictions of ecosystem function from data of species distributions and traits. The traits that are selected should both respond to environmental factors and influence ecosystem functioning. Invertebrate mouthpart traits fulfill these criteria, but are seldom collected, lack standardized measurement protocols, and have infrequently been investigated in response to environmental factors. We surveyed isopod species that consume plant detritus, and tree communities in 58 plots across primary and secondary forests in Singapore. We measured body dimensions (body size traits), pereopod and antennae lengths (locomotory traits), dimensions of mandible structures (morphological mouthpart traits), and mechanical advantages generated by mandible shape (mechanical mouthpart traits) for six isopod species found in these plots and investigated if these traits respond to changes in tree community composition, tree diversity, and forest structure. Morphological mouthpart traits responded to a tree compositional gradient reflecting forest recovery degree. Mouthpart features associated with greater consumption of litter (broader but less serrated/rugose lacinia mobilis [an important cutting and chewing structure on the mandible]) were most prevalent in abandoned plantation and young secondary forests containing disturbance-associated tree species. Feeding strategies associated with fungi grazing (narrower and more serrated/rugose lacinia mobilis) were most prevalent in late secondary forests containing later successional tree species. Since morphological mouthpart traits likely also predict consumption and excretion rates of isopods, these traits advance our understanding of environment-trait-ecosystem functioning relationships across contrasting tropical forest plots that vary in composition, disturbance history, and post-disturbance recovery.


Subject(s)
Ecosystem , Isopoda , Animals , Tropical Climate , Ecology , Plants
6.
Nature ; 620(7975): 807-812, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612395

ABSTRACT

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Subject(s)
Biodiversity , Conservation of Natural Resources , Goals , Tropical Climate , United Nations , Animals , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Mammals , Forestry/legislation & jurisprudence , Forestry/methods , Forestry/trends
7.
J Anim Ecol ; 92(8): 1589-1600, 2023 08.
Article in English | MEDLINE | ID: mdl-37272224

ABSTRACT

Dragonfly/damselfly naiads have the potential to control mosquitoes, and indirectly the diseases they carry, due to their extensive predation on mosquito larvae. Experimental studies have measured the effectiveness of individual dragonfly/damselfly naiads in controlling mosquitoes by introducing them to mosquito larvae and counting the number of larvae eaten in a given time period (i.e. predation success). Without a quantitative synthesis, however, such individual measures are unable to provide a generalized estimation about the effectiveness of dragonflies/damselflies as biological mosquito control agents. To achieve this, we assembled a database containing 485 effect sizes across 31 studies on predation successes of 47 species of commonly found dragonfly/damselfly naiads on nine species of mosquito larvae belonging to Aedes, Anopheles and Culex. These studies covered 14 countries across Asia, Africa and South and North America, where mosquitoes are the vectors of Chikungunya, Dengue, Japanese encephalitis, Lymphatic filariasis, Malaria, Rift Valley fever, West Nile fever, Yellow fever and Zika. Using this database, we conducted a meta-analysis to estimate the average predation success per day by a single individual dragonfly/damselfly naiad on these mosquito larvae as a generalized measure of the effectiveness of dragonflies/damselflies for mosquito control. We also built an interaction network for predator-dragonflies/damselflies and prey-mosquitoes and the diseases they vector to understand the functioning of this important predator-prey network. Our results showed that mosquito larvae were significantly reduced through predation by dragonfly/damselfly naiads. Within experimental containers, a single individual dragonfly/damselfly naiad can eat on average 40 (95% confidence intervals [CIs] = 20, 60) mosquito larvae per day, equivalent to a reduction of the mosquito larval population by 45% (95% CIs = 30%, 59%) per day. The average predation success did not significantly vary among Aedes, Anopheles and Culex mosquitoes or among the four (I-IV) mosquito larval stages. These results provide strong evidence that dragonflies/damselflies can be effective biological control agents of mosquitoes, and environmental planning to promote them could lower the risk of spreading mosquito-borne diseases in an environmentally friendly and cost-effective manner.


Subject(s)
Aedes , Anopheles , Odonata , Zika Virus Infection , Zika Virus , Animals , Mosquito Vectors , Larva , Predatory Behavior
8.
Curr Opin Insect Sci ; 58: 101063, 2023 08.
Article in English | MEDLINE | ID: mdl-37247774

ABSTRACT

The decline of insect diversity is a much-discussed, yet understudied phenomenon, particularly in the tropics, where the majority of insect abundance, diversity and biomass is found. Integrated approaches involving traditional taxonomic methods, new molecular approaches, and novel monitoring and identification tools and applications are needed to address related and challenging questions regarding how many species of tropical insects exist, their distributions and natural history, the relative impacts of global change drivers on insect diversity across complex tropical landscapes, and the effects of insect declines on ecosystem functions and services. The main barriers to addressing these challenges are a lack of capacity and funding for research on insects in tropical countries and a lack of recognition of their importance for ecosystem functioning and human wellbeing. Insects must be brought into policy agendas, local capacity and funding through cross-boundary collaborations and equitable scientific practices increased, and their importance emphasized.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Insecta
9.
J Anim Ecol ; 92(1): 44-65, 2023 01.
Article in English | MEDLINE | ID: mdl-36443916

ABSTRACT

Traits are key for understanding the environmental responses and ecological roles of organisms. Trait approaches to functional ecology are well established for plants, whereas consistent frameworks for animal groups are less developed. Here we suggest a framework for the study of the functional ecology of animals from a trait-based response-effect approach, using dung beetles as model system. Dung beetles are a key group of decomposers that are important for many ecosystem processes. The lack of a trait-based framework tailored to this group has limited the use of traits in dung beetle functional ecology. We review which dung beetle traits respond to the environment and affect ecosystem processes, covering the wide range of spatial, temporal and biological scales at which they are involved. Dung beetles show trait-based responses to variation in temperature, water, soil properties, trophic resources, light, vegetation structure, competition, predation and parasitism. Dung beetles' influence on ecosystem processes includes trait-mediated effects on nutrient cycling, bioturbation, plant growth, seed dispersal, other dung-based organisms and parasite transmission, as well as some cases of pollination and predation. We identify 66 dung beetle traits that are either response or effect traits, or both, pertaining to six main categories: morphology, feeding, reproduction, physiology, activity and movement. Several traits pertain to more than one category, in particular dung relocation behaviour during nesting or feeding. We also identify 136 trait-response and 77 trait-effect relationships in dung beetles. No response to environmental stressors nor effect over ecological processes were related with traits of a single category. This highlights the interrelationship between the traits shaping body-plans, the multi-functionality of traits, and their role linking responses to the environment and effects on the ecosystem. Despite current developments in dung beetle functional ecology, many knowledge gaps remain, and there are biases towards certain traits, functions, taxonomic groups and regions. Our framework provides the foundations for the thorough development of trait-based dung beetle ecology. It also serves as an example framework for other taxa.


Subject(s)
Coleoptera , Ecosystem , Animals , Coleoptera/physiology , Soil/chemistry , Plants , Seeds , Biodiversity , Ecology
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36373930

ABSTRACT

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Subject(s)
Ecosystem , Tropical Climate , Biodiversity , Plants , Asia
11.
Insect Conserv Divers ; 16(2): 173-189, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38505358

ABSTRACT

Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances.We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter 'members') of the UK-based Royal Entomological Society (RES).A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants.The outcome was a set of 61 priority challenges within four groupings of related themes: (i) 'Fundamental Research' (themes: Taxonomy, 'Blue Skies' [defined as research ideas without immediate practical application], Methods and Techniques); (ii) 'Anthropogenic Impacts and Conservation' (themes: Anthropogenic Impacts, Conservation Options); (iii) 'Uses, Ecosystem Services and Disservices' (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) 'Collaboration, Engagement and Training' (themes: Knowledge Access, Training and Collaboration, Societal Engagement).Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages.Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change.

12.
J Anim Ecol ; 91(3): 604-617, 2022 03.
Article in English | MEDLINE | ID: mdl-34954816

ABSTRACT

Conservation outcomes could be greatly enhanced if strategies addressing anthropogenic land-use change considered the impacts of these changes on entire communities as well as on individual species. Examining how species interactions change across gradients of habitat disturbance allows us to predict the cascading consequences of species extinctions and the response of ecological networks to environmental change. We conducted the first detailed study of changes in a commensalist network of mammals and dung beetles across an environmental disturbance gradient, from primary tropical forest to plantations, which varied in above-ground carbon density (ACD) and mammal communities. Mammal diversity changed only slightly across the gradient, remaining high even in oil palm plantations and fragmented forest. Dung beetle species richness, however, declined in response to lower ACD and was particularly low in plantations and the most disturbed forest sites. Three of the five network metrics (nestedness, network specialization and functionality) were significantly affected by changes in dung beetle species richness and ACD, but mammal diversity was not an important predictor of network structure. Overall, the interaction networks remained structurally and functionally similar across the gradient, only becoming simplified (i.e. with fewer dung beetle species and fewer interactions) in the most disturbed sites. We suggest that the high diversity of mammals, even in disturbed forests, combined with the generalist feeding patterns of dung beetles, confer resilience to the commensalist dung beetle-mammal networks. This study highlights the importance of protecting logged and fragmented forests to maintain interaction networks and potentially prevent extinction cascades in human-modified systems.


Subject(s)
Coleoptera , Animals , Biodiversity , Coleoptera/physiology , Ecosystem , Forests , Mammals
13.
Mol Ecol ; 30(13): 3299-3312, 2021 07.
Article in English | MEDLINE | ID: mdl-33171014

ABSTRACT

The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.


Subject(s)
Ecosystem , Leeches , Animals , Biodiversity , Borneo , Conservation of Natural Resources , DNA/genetics , Forests , Humans , Malaysia , Mammals/genetics , RNA, Ribosomal, 16S
14.
Nat Plants ; 6(12): 1418-1426, 2020 12.
Article in English | MEDLINE | ID: mdl-33299148

ABSTRACT

Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils and, in particular, palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for ~40% of the current global annual demand for vegetable oil as food, animal feed and fuel (210 Mt), but planted oil palm covers less than 5-5.5% of the total global oil crop area (approximately 425 Mha) due to oil palm's relatively high yields. Recent oil palm expansion in forested regions of Borneo, Sumatra and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm's role in deforestation. Oil palm expansion's direct contribution to regional tropical deforestation varies widely, ranging from an estimated 3% in West Africa to 50% in Malaysian Borneo. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 2050. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation and livelihoods. Our Review highlights that although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. Greater research attention needs to be given to investigating the impacts of palm oil production compared to alternatives for the trade-offs to be assessed at a global scale.


Subject(s)
Agriculture/trends , Arecaceae/growth & development , Biodiversity , Conservation of Natural Resources/trends , Crops, Agricultural/growth & development , Palm Oil , Sustainable Growth , Agriculture/statistics & numerical data , Forecasting
15.
Ecol Lett ; 23(4): 674-681, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32043741

ABSTRACT

Decades of research suggest that species richness depends on spatial characteristics of habitat patches, especially their size and isolation. In contrast, the habitat amount hypothesis predicts that (1) species richness in plots of fixed size (species density) is more strongly and positively related to the amount of habitat around the plot than to patch size or isolation; (2) habitat amount better predicts species density than patch size and isolation combined, (3) there is no effect of habitat fragmentation per se on species density and (4) patch size and isolation effects do not become stronger with declining habitat amount. Data on eight taxonomic groups from 35 studies around the world support these predictions. Conserving species density requires minimising habitat loss, irrespective of the configuration of the patches in which that habitat is contained.


Subject(s)
Ecosystem
16.
Science ; 366(6470): 1236-1239, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31806811

ABSTRACT

Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity-affected by avoidance of habitat edges-should be driven by historical exposure to, and therefore species' evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world's tropical forests.


Subject(s)
Biodiversity , Ecosystem , Extinction, Biological , Forests , Animals , Conservation of Natural Resources , Cyclonic Storms , Fires
17.
Trends Plant Sci ; 24(9): 790-793, 2019 09.
Article in English | MEDLINE | ID: mdl-31326334

ABSTRACT

Maximizing more ecosystem functions may require more species. This relationship results from imperfect correlations among ecosystem functions because species contribute differently to each function. These correlations among species contributions to functions and the extent of interspecific competition are crucial when determining how many species are necessary to maximize additional functionality.


Subject(s)
Biodiversity , Ecosystem
18.
Ecol Lett ; 22(10): 1629-1637, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31353816

ABSTRACT

The effect of sexual selection on species persistence remains unclear. The cost of bearing ornaments or armaments might increase extinction risk, but sexual selection can also enhance the spread of beneficial alleles and increase the removal of deleterious alleles, potentially reducing extinction risk. Here we investigate the effect of sexual selection on species persistence in a community of 34 species of dung beetles across a gradient of environmental disturbance ranging from old growth forest to oil palm plantation. Horns are sexually selected traits used in contests between males, and we find that both horn presence and relative size are strongly positively associated with species persistence and abundance in altered habitats. Testes mass, an indicator of post-copulatory selection, is, however, negatively linked with the abundance of species within the most disturbed habitats. This study represents the first evidence from a field system of a population-level benefit from pre-copulatory sexual selection.


Subject(s)
Coleoptera/anatomy & histology , Sexual Behavior, Animal , Animals , Borneo , Coleoptera/physiology , Ecosystem , Male , Phenotype
19.
Proc Biol Sci ; 286(1897): 20182002, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30963853

ABSTRACT

Dung beetles are increasingly used as a study taxon-both as bioindicators of environmental change, and as a model system for exploring ecosystem functioning. The advantages of this focal taxon approach are many; dung beetles are abundant in a wide range of terrestrial ecosystems, speciose, straightforward to sample, respond to environmental gradients and can be easily manipulated to explore species-functioning relationships. However, there remain large gaps in our understanding of the relationship between dung beetles and the mammals they rely on for dung. Here we review the literature, showing that despite an increase in the study of dung beetles linked to ecosystem functioning and to habitat and land use change, there has been little research into their associations with mammals. We summarize the methods and findings from dung beetle-mammal association studies to date, revealing that although empirical field studies of dung beetles rarely include mammal data, those that do, indicate mammal species presence and composition has a large impact on dung beetle species richness and abundance. We then review the methods used to carry out diet preference and ecosystem functioning studies, finding that despite the assumption that dung beetles are generalist feeders, there are few quantitative studies that directly address this. Together this suggests that conclusions about the effects of habitat change on dung beetles are based on incomplete knowledge. We provide recommendations for future work to identify the importance of considering mammal data for dung beetle distributions, composition and their contributions to ecosystem functioning; a critical step if dung beetles are to be used as a reliable bioindicator taxon.


Subject(s)
Biodiversity , Coleoptera/physiology , Feces , Food Chain , Mammals/physiology , Animals , Ecosystem
20.
Ecology ; 100(4): e02622, 2019 04.
Article in English | MEDLINE | ID: mdl-30644540

ABSTRACT

Joint species distribution modeling has enabled researchers to move from species-level to community-level analyses, leading to statistically more efficient and ecologically more informative use of data. Here, we propose joint species movement modeling (JSMM) as an analogous approach that enables inferring both species- and community-level movement parameters from multispecies movement data. The species-level movement parameters are modeled as a function of species traits and phylogenetic relationships, allowing one to ask how species traits influence movements, and whether phylogenetically related species are similar in their movement behavior. We illustrate the modeling framework with two contrasting case studies: a stochastic redistribution model for direct observations of bird movements and a spatially structured diffusion model for capture-recapture data on moth movements. In both cases, the JSMM identified several traits that explain differences in movement behavior among species, such as movement rate increasing with body size in both birds and moths. We show with simulations that the JSMM approach increases precision of species-specific parameter estimates by borrowing information from other species that are closely related or have similar traits. The JSMM framework is applicable for many kinds of data, and it facilitates a mechanistic understanding of the causes and consequences of interspecific variation in movement behavior.


Subject(s)
Birds , Movement , Animals , Body Size , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...