Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 89(9): e0005921, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33820817

ABSTRACT

Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; ΔescV [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7). Behavior (novel-object recognition [NOR] task, light/dark [L/D] box, and open-field test [OFT]), intestinal physiology (Ussing chambers), and the gut microbiota (16S Illumina sequencing) were assessed in adulthood (6 to 8 weeks of age). Neonatal infection of mice with EPEC, but not the T3SS mutant, caused ileal inflammation in neonates and impaired recognition memory (NOR task) in adulthood. Cognitive impairments were coupled with increased neurogenesis (Ki67 and doublecortin immunostaining) and neuroinflammation (increased microglia activation [Iba1]) in adulthood. Intestinal pathophysiology in adult mice was characterized by increased secretory state (short-circuit current [Isc]) and permeability (conductance) (fluorescein isothiocyanate [FITC]-dextran flux) in the ileum and colon of neonatally EPEC-infected mice, along with increased expression of proinflammatory cytokines (Tnfα, Il12, and Il6) and pattern recognition receptors (Nod1/2 and Tlr2/4). Finally, neonatal EPEC infection caused significant dysbiosis of the gut microbiota, including decreased Firmicutes, in adulthood. Together, these findings demonstrate that infection in early life can significantly impair the MGB axis in adulthood.


Subject(s)
Brain/metabolism , Enteropathogenic Escherichia coli/physiology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Feedback, Physiological , Gastrointestinal Microbiome , Intestines , Animals , Disease Susceptibility , Humans
2.
J Physiol ; 599(7): 2075-2084, 2021 04.
Article in English | MEDLINE | ID: mdl-33491187

ABSTRACT

KEY POINTS: It has previously been shown that afferent and efferent vagal nerve stimulation potently inhibits lipopolysaccharide (LPS)-induced inflammation Our data show inhibition of inflammation by efferent but not afferent vagal nerve stimulation requires T-cell derived acetylcholine We show that afferent and efferent neuroimmune circuits require ß2 -adrenergic receptor signalling ABSTRACT: Chronic inflammation due to inappropriate immune cell activation can have significant effects on a variety of organ systems, reducing lifespan and quality of life. As such, highly targeted control of immune cell activation is a major therapeutic goal. Vagus nerve stimulation (VNS) has emerged as a therapeutic modality that exploits neuroimmune communication to reduce immune cell activation and consequently inflammation. Although vagal efferent fibres were originally identified as the primary driver of anti-inflammatory actions, the vagus nerve in most species of animals predominantly comprises afferent fibres. Stimulation of vagal afferent fibres can also reduce inflammation; it is, however, uncertain how these two neuroimmune circuits diverge. Here we show that afferent VNS induces a mechanism distinct from efferent VNS, ameliorating lipopolysaccharide (LPS)-induced inflammation independently of T-cell derived acetylcholine (ACh) which is required by efferent VNS. Using a ß2 -adrenergic receptor antagonist (ß2 -AR), we find that immune regulation induced by intact, afferent, or efferent VNS occurs in a ß2- AR-dependent manner. Together, our findings indicate that intact VNS activates at least two distinct neuroimmune circuits each with unique mechanisms of action. Selective targeting of either the vagal efferent or afferent fibres may provide more personalized, robust and effective control over inappropriate immune responses.


Subject(s)
Vagus Nerve Stimulation , Animals , Inflammation , Lipopolysaccharides , Quality of Life , Vagus Nerve
3.
Brain Behav Immun ; 91: 437-450, 2021 01.
Article in English | MEDLINE | ID: mdl-33157256

ABSTRACT

Myelination in the peripheral and central nervous systems is critical in regulating motor, sensory, and cognitive functions. As myelination occurs rapidly during early life, neonatal gut dysbiosis during early colonization can potentially alter proper myelination by dysregulating immune responses and neuronal differentiation. Despite common usage of antibiotics (Abx) in children, the impact of neonatal Abx-induced dysbiosis on the development of microbiota, gut, brain (MGB) axis, including myelination and behavior, is unknown. We hypothesized that neonatal Abx-induced dysbiosis dysregulates host-microbe interactions, impairing myelination in the brain, and altering the MGB axis. Neonatal C57BL/6 mice were orally gavaged daily with an Abx cocktail (neomycin, vancomycin, ampicillin) or water (vehicle) from postnatal day 7 (P7) until weaning (P23) to induce gut dysbiosis. Behavior (cognition; anxiety-like behavior), microbiota sequencing, and qPCR (ileum, colon, hippocampus and pre-frontal cortex [PFC]) were performed in adult mice (6-8 weeks). Neonatal Abx administration led to intestinal dysbiosis in adulthood, impaired intestinal physiology, coupled with perturbations of bacterial metabolites and behavioral alterations (cognitive deficits and anxiolytic behavior). Expression of myelin-related genes (Mag, Mog, Mbp, Mobp, Plp) and transcription factors (Sox10, Myrf) important for oligodendrocytes were significantly increased in the PFC region of Abx-treated mice. Increased myelination was confirmed by immunofluorescence imaging and western blot analysis, demonstrating increased expression of MBP, SOX10 and MYRF in neonatally Abx-treated mice compared to sham controls in adulthood. Finally, administration of the short chain fatty acid butyrate following completion of the Abx treatment restored intestinal physiology, behavior, and myelination impairments, suggesting a critical role for the gut microbiota in mediating these effects. Taken together, we identified a long-lasting impact of neonatal Abx administration on the MGB axis, specifically on myelin regulation in the PFC region, potentially contributing to impaired cognitive function and bacterial metabolites are effective in reversing this altered phenotype.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Anti-Bacterial Agents , Brain , Mice , Mice, Inbred C57BL , Myelin Sheath
4.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G361-G374, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32726162

ABSTRACT

Inflammatory bowel diseases (IBDs) are chronic intestinal diseases, frequently associated with comorbid psychological and cognitive deficits. These neuropsychiatric effects include anxiety, depression, and memory impairments that can be seen both during active disease and following remission and are more frequently seen in pediatric patients. The mechanism(s) through which these extraintestinal deficits develop remain unknown, and the study of these phenomenon is hampered by a lack of murine pediatric IBD models. Herein we describe microbiota-gut-brain (MGB) axis deficits following induction of colitis in a pediatric setting. Acute colitis was induced by administration of 2% dextran sodium sulfate (DSS) for 5 days starting at weaning [postnatal day (P)21] causing reduced weight gain, colonic shortening, and colonic inflammation by 8 days post-DSS (P29), which were mostly resolved in adult (P56) mice. Despite resolution of acute disease, cognitive deficits (novel object recognition task) and anxiety-like behavior (light/dark box) were identified in the absence of changes in exploratory behavior (open field test) in P56 mice previously treated with DSS at weaning. Behavioral deficits were found in conjunction with neuroinflammation, decreased neurogenesis, and altered expression of pattern recognition receptor genes in the hippocampus. Additionally, persistent alterations in the gut microbiota composition were observed at P56, including reduced butyrate-producing species. Taken together, these results describe for the first time the presence of MGB axis deficits following induction of colitis at weaning, which persist in adulthood.NEW & NOTEWORTHY Here we describe long-lasting impacts on the microbiota-gut-brain (MGB) axis following administration of low-dose dextran sodium sulfate (DSS) to weaning mice (P21), including gut dysbiosis, colonic inflammation, and brain/behavioral deficits in adulthood (P56). Early-life DSS leads to acute colonic inflammation, similar to adult mice; however, it results in long-lasting deficits in the MGB axis in adulthood (P56), in contrast to the transient deficits seen in adult DSS. This model highlights the unique features of pediatric inflammatory bowel disease.


Subject(s)
Brain/physiopathology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/physiopathology , Neural Pathways/physiopathology , Animals , Anxiety/psychology , Behavior, Animal , Cognition Disorders/etiology , Cognition Disorders/psychology , Colitis/chemically induced , Colitis/microbiology , Colitis/physiopathology , Dextran Sulfate , Disease Models, Animal , Dysbiosis , Female , Hippocampus/metabolism , Humans , Inflammatory Bowel Diseases/psychology , Mice , Mice, Inbred C57BL , Neurogenesis , Weight Gain
5.
J Infect Dis ; 221(12): 1978-1988, 2020 06 11.
Article in English | MEDLINE | ID: mdl-31960920

ABSTRACT

BACKGROUND: Neurons are an integral component of the immune system that functions to coordinate responses to bacterial pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation of the intestinal tract. METHODS: In this study, we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. Selective ablation of nociceptive neurons significantly increased bacterial burden 10 days postinfection and delayed pathogen clearance. RESULTS: Because the sensory neuropeptide CGRP (calcitonin gene-related peptide) regulates host responses during infection of the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C rodentium infection. Although CGRP receptor blockade reduced certain proinflammatory gene expression, bacterial burden and Il-22 expression was unaffected. CONCLUSIONS: Our data highlight that sensory nociceptive neurons exert a significant host protective role during C rodentium infection, independent of CGRP receptor signaling.


Subject(s)
Citrobacter rodentium/immunology , Enteric Nervous System/immunology , Enterobacteriaceae Infections/immunology , Host-Pathogen Interactions/immunology , Nociceptors/immunology , Animals , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Disease Models, Animal , Enteric Nervous System/cytology , Enteric Nervous System/drug effects , Enterobacteriaceae Infections/microbiology , Host-Pathogen Interactions/drug effects , Humans , Intestinal Mucosa/innervation , Intestinal Mucosa/microbiology , Intestine, Small/innervation , Intestine, Small/microbiology , Mice , Mice, Knockout , Nociceptors/drug effects , Nociceptors/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism , TRPV Cation Channels/genetics
6.
J Physiol ; 597(24): 5777-5797, 2019 12.
Article in English | MEDLINE | ID: mdl-31652348

ABSTRACT

KEY POINTS: •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour. ABSTRACT: Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre+ Nod1f/f ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.


Subject(s)
Brain/metabolism , Intestinal Mucosa/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Serotonin/metabolism , Synaptic Transmission , Animals , Anxiety/etiology , Anxiety/metabolism , Brain/physiology , Cells, Cultured , Cognition , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Intestinal Absorption , Intestinal Mucosa/physiology , Male , Mice , Mice, Inbred C57BL , Neurogenesis , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/genetics , Stress, Psychological/etiology , Stress, Psychological/metabolism
7.
Environ Pollut ; 253: 708-721, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31336350

ABSTRACT

The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca2+ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170-200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0-6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28-P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1ß, and Il22), and resulted in dysbiosis of the gut microbiota, including altered ß-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.


Subject(s)
Environmental Pollutants/toxicity , Maternal Exposure , Polychlorinated Biphenyls/toxicity , Animals , Autism Spectrum Disorder , Diet , Dietary Exposure , Dysbiosis , Female , Fragile X Mental Retardation Protein , Gastrointestinal Microbiome , Homeostasis , Humans , Inflammation , Intestines , Mice , Tight Junctions , Toxicity Tests
8.
PLoS Pathog ; 15(4): e1007719, 2019 04.
Article in English | MEDLINE | ID: mdl-30973939

ABSTRACT

The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1ß, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.


Subject(s)
Acetylcholine/metabolism , Citrobacter rodentium/immunology , Colon/immunology , Enterobacteriaceae Infections/immunology , T-Lymphocytes/immunology , Animals , Cells, Cultured , Colon/metabolism , Cytokines/metabolism , Enterobacteriaceae Infections/microbiology , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR5/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...