Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 7(43): 18188-97, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26482127

ABSTRACT

We have modeled InAs nanowires using finite element methods considering the actual device geometry, the semiconducting nature of the channel and surface states, providing a comprehensive picture of charge distribution and gate action. The effective electrostatic gate width and screening effects are taken into account. A pivotal aspect is that the gate coupling to the nanowire is compromised by the concurrent coupling of the gate electrode to the surface/interface states, which provide the vast majority of carriers for undoped nanowires. In conjunction with field-effect transistor (FET) measurements using two gates with distinctly dissimilar couplings, the study reveals the density of surface states that gives rise to a shallow quantum well at the surface. Both gates yield identical results for the electron concentration and mobility only at the actual surface state density. Our method remedies the flaws of conventional FET analysis and provides a straightforward alternative to intricate Hall effect measurements on nanowires.

2.
Nanotechnology ; 25(13): 135203, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24595060

ABSTRACT

Back-gated InAs nanowire field-effect transistors are studied focusing on the formation of intrinsic quantum dots, i.e. dots not intentionally defined by electrodes. Such dots have been studied before, but the suggested explanations for their origin leave some open questions, which are addressed here. Stability diagrams of samples with different doping levels are recorded at electron temperatures below 200 mK, allowing us to estimate the number and size of the dots as well as the type of connection, i.e. in series or in parallel. We discuss several potential physical origins of the dots and conclude that they are most probably induced by potential fluctuations at the nanowire surface. Additionally, we show that via gate voltage and doping, the samples can be tuned to different regimes of Coulomb blockade.

3.
Rev Sci Instrum ; 82(11): 113705, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22128982

ABSTRACT

InAs nanowires are grown epitaxially by catalyst-free metal organic vapor phase epitaxy and are subsequently positioned with a lateral accuracy of less than 1 µm using simple adhesion forces between the nanowires and an indium tip. The technique, requiring only an optical microscope, is used to place individual nanowires onto the corner of a cleaved-edge wafer as well as across predefined holes in Si(3)N(4) membranes. The precision of the method is limited by the stability of the micromanipulators and the precision of the optical microscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...