Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 42(1): 157-167.e9, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38194914

ABSTRACT

Cells in the tumor microenvironment (TME) influence each other through secretion and sensing of soluble mediators, such as cytokines and chemokines. While signaling of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) is integral to anti-tumor immune responses, our understanding of the spatiotemporal behavior of these cytokines is limited. Here, we describe a single cell transcriptome-based approach to infer which signal(s) an individual cell has received. We demonstrate that, contrary to expectations, CD8+ T cell-derived IFNγ is the dominant modifier of the TME relative to TNFα. Furthermore, we demonstrate that cell pools that show abundant IFNγ sensing are characterized by decreased expression of transforming growth factor ß (TGFß)-induced genes, consistent with IFNγ-mediated TME remodeling. Collectively, these data provide evidence that CD8+ T cell-secreted cytokines should be categorized into local and global tissue modifiers, and describe a broadly applicable approach to dissect cytokine and chemokine modulation of the TME.


Subject(s)
Cytokines , Tumor Necrosis Factor-alpha , Humans , Tumor Microenvironment , Interferon-gamma , CD8-Positive T-Lymphocytes
2.
Nature ; 572(7770): 538-542, 2019 08.
Article in English | MEDLINE | ID: mdl-31367040

ABSTRACT

Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1ß, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1ß and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Inflammation/genetics , Inflammation/pathology , Neoplasm Metastasis/pathology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Wnt Proteins/metabolism , Animals , Breast Neoplasms/complications , Disease Models, Animal , Female , Inflammation/complications , Inflammation/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Mice , Neutrophils/immunology
4.
Cancer Res ; 79(13): 3406-3416, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31040155

ABSTRACT

Immunotherapies are an emerging strategy for treatment of solid tumors. Improved understanding of the mechanisms employed by cytotoxic T lymphocytes (CTL) to control tumors will aid in the development of immunotherapies. CTLs can directly kill tumor cells in a contact-dependent manner or may exert indirect effects on tumor cells via secretion of cytokines. Here, we aim to quantify the importance of these mechanisms in murine thymoma EL4/EG7 cells. We developed an agent-based model (ABM) and an ordinary differential equation model of tumor regression after adoptive transfer of a population of CTLs. Models were parameterized based on in vivo measurements of CTL infiltration and killing rates applied to EL4/EG7 tumors and OTI T cells. We quantified whether infiltrating CTLs are capable of controlling tumors through only direct, contact-dependent killing. Both models agreed that the low measured killing rate of CTLs in vivo was insufficient to cause tumor regression. In our ABM, we also simulated CTL production of the cytokine IFNγ in order to explore how an antiproliferative effect of IFNγ might aid CTLs in tumor control. In this model, IFNγ substantially reduced tumor growth compared with direct killing alone. Collectively, these data demonstrate that contact-dependent killing is insufficient for EL4 regression in vivo and highlight the potential importance of cytokine-induced antiproliferative effects in T-cell-mediated tumor control. SIGNIFICANCE: Computational modeling highlights the importance of cytokine-induced antiproliferative effects in T-cell-mediated control of tumor progression.


Subject(s)
Cytotoxicity, Immunologic/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Cytotoxic/immunology , Thymoma/therapy , Thymus Neoplasms/therapy , Adoptive Transfer , Animals , Cell Movement , Cell Proliferation , Cytokines/metabolism , Mice , T-Lymphocytes, Cytotoxic/metabolism , Thymoma/immunology , Thymoma/metabolism , Thymoma/pathology , Thymus Neoplasms/immunology , Thymus Neoplasms/metabolism , Thymus Neoplasms/pathology , Tumor Cells, Cultured
5.
Nat Med ; 25(6): 920-928, 2019 06.
Article in English | MEDLINE | ID: mdl-31086347

ABSTRACT

The efficacy of programmed cell death protein 1 (PD-1) blockade in metastatic triple-negative breast cancer (TNBC) is low1-5, highlighting a need for strategies that render the tumor microenvironment more sensitive to PD-1 blockade. Preclinical research has suggested immunomodulatory properties for chemotherapy and irradiation6-13. In the first stage of this adaptive, non-comparative phase 2 trial, 67 patients with metastatic TNBC were randomized to nivolumab (1) without induction or with 2-week low-dose induction, or with (2) irradiation (3 × 8 Gy), (3) cyclophosphamide, (4) cisplatin or (5) doxorubicin, all followed by nivolumab. In the overall cohort, the objective response rate (ORR; iRECIST14) was 20%. The majority of responses were observed in the cisplatin (ORR 23%) and doxorubicin (ORR 35%) cohorts. After doxorubicin and cisplatin induction, we detected an upregulation of immune-related genes involved in PD-1-PD-L1 (programmed death ligand 1) and T cell cytotoxicity pathways. This was further supported by enrichment among upregulated genes related to inflammation, JAK-STAT and TNF-α signaling after doxorubicin. Together, the clinical and translational data of this study indicate that short-term doxorubicin and cisplatin may induce a more favorable tumor microenvironment and increase the likelihood of response to PD-1 blockade in TNBC. These data warrant confirmation in TNBC and exploration of induction treatments prior to PD-1 blockade in other cancer types.


Subject(s)
Programmed Cell Death 1 Receptor/antagonists & inhibitors , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Adult , Aged , Antineoplastic Agents, Immunological/administration & dosage , B7-H1 Antigen/antagonists & inhibitors , Cisplatin/administration & dosage , Combined Modality Therapy , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Female , Humans , Middle Aged , Neoplasm Metastasis/genetics , Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Nivolumab/administration & dosage , Radiotherapy, Adjuvant , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
Nat Med ; 25(1): 89-94, 2019 01.
Article in English | MEDLINE | ID: mdl-30510250

ABSTRACT

Infiltration of human cancers by T cells is generally interpreted as a sign of immune recognition, and there is a growing effort to reactivate dysfunctional T cells at such tumor sites1. However, these efforts only have value if the intratumoral T cell receptor (TCR) repertoire of such cells is intrinsically tumor reactive, and this has not been established in an unbiased manner for most human cancers. To address this issue, we analyzed the intrinsic tumor reactivity of the intratumoral TCR repertoire of CD8+ T cells in ovarian and colorectal cancer-two tumor types for which T cell infiltrates form a positive prognostic marker2,3. Data obtained demonstrate that a capacity to recognize autologous tumor is limited to approximately 10% of intratumoral CD8+ T cells. Furthermore, in two of four patient samples tested, no tumor-reactive TCRs were identified, despite infiltration of their tumors by T cells. These data indicate that the intrinsic capacity of intratumoral T cells to recognize adjacent tumor tissue can be rare and variable, and suggest that clinical efforts to reactivate intratumoral T cells will benefit from approaches that simultaneously increase the quality of the intratumoral TCR repertoire.


Subject(s)
Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell/metabolism , CD8-Positive T-Lymphocytes/immunology , Humans , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Phenotype , Reproducibility of Results
7.
Cell ; 174(6): 1586-1598.e12, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100188

ABSTRACT

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.


Subject(s)
Leukocytes, Mononuclear/cytology , T-Lymphocytes/immunology , Aged , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques , Coculture Techniques , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , In Vitro Techniques , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lymphocyte Activation/drug effects , Male , Middle Aged , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Tumor Cells, Cultured
8.
Nature ; 549(7670): 106-110, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28813410

ABSTRACT

The clinical benefit for patients with diverse types of metastatic cancers that has been observed upon blockade of the interaction between PD-1 and PD-L1 has highlighted the importance of this inhibitory axis in the suppression of tumour-specific T-cell responses. Notwithstanding the key role of PD-L1 expression by cells within the tumour micro-environment, our understanding of the regulation of the PD-L1 protein is limited. Here we identify, using a haploid genetic screen, CMTM6, a type-3 transmembrane protein of previously unknown function, as a regulator of the PD-L1 protein. Interference with CMTM6 expression results in impaired PD-L1 protein expression in all human tumour cell types tested and in primary human dendritic cells. Furthermore, through both a haploid genetic modifier screen in CMTM6-deficient cells and genetic complementation experiments, we demonstrate that this function is shared by its closest family member, CMTM4, but not by any of the other CMTM members tested. Notably, CMTM6 increases the PD-L1 protein pool without affecting PD-L1 (also known as CD274) transcription levels. Rather, we demonstrate that CMTM6 is present at the cell surface, associates with the PD-L1 protein, reduces its ubiquitination and increases PD-L1 protein half-life. Consistent with its role in PD-L1 protein regulation, CMTM6 enhances the ability of PD-L1-expressing tumour cells to inhibit T cells. Collectively, our data reveal that PD-L1 relies on CMTM6/4 to efficiently carry out its inhibitory function, and suggest potential new avenues to block this pathway.


Subject(s)
B7-H1 Antigen/metabolism , MARVEL Domain-Containing Proteins/metabolism , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/chemistry , CRISPR-Cas Systems , Cell Line, Tumor , Dendritic Cells/metabolism , Genetic Complementation Test , Haploidy , Humans , MARVEL Domain-Containing Proteins/genetics , Melanoma/genetics , Melanoma/metabolism , Protein Binding , Protein Stability , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...