Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(20): e115, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36062567

ABSTRACT

Synthetic mRNA has recently moved into the focus of therapeutic and vaccination efforts. Incorporation of modified nucleotides during in vitro transcription can improve translation and attenuate immunogenicity, but is limited to triphosphate nucleotides which are accepted by RNA polymerases, and their incorporation is either random or complete. In contrast, site-specific modification, herein termed 'point modification' in analogy to point mutations, holds significant technical challenge. We developed fundamental techniques for isolation of long, translatable and internally point-modified mRNAs. Enabling concepts include three-way-one-pot splint ligations, and isolation of mRNA by real-time elution from agarose gels. The use of blue light permitted visualization of mRNA in pre-stained gels without the photochemical damage associated with the use of hard UV-radiation. This allowed visualization of the mRNA through its migration in the agarose gel, which in turn, was a prerequisite for its recovery by electroelution into precast troughs. Co-eluting agarose particles were quantified and found to not be detrimental to mRNA translation in vitro. Translation of EGFP-coding mRNA into functional protein was quantified by incorporation of 35S-labelled methionine and by in-gel EGFP fluorescence. This enabled the functional analysis of point modifications, specifically of ribose methylations in the middle of a 1371 nt long mRNA.


Subject(s)
Genetic Engineering , Nucleotides , Methylation , Nucleotides/metabolism , RNA, Messenger/chemical synthesis , RNA, Messenger/genetics , Sepharose , Genetic Engineering/methods
2.
RNA ; 26(10): 1489-1506, 2020 10.
Article in English | MEDLINE | ID: mdl-32636310

ABSTRACT

Chemical modifications are found on almost all RNAs and affect their coding and noncoding functions. The identification of m6A on mRNA and its important role in gene regulation stimulated the field to investigate whether additional modifications are present on mRNAs. Indeed, modifications including m1A, m5C, m7G, 2'-OMe, and Ψ were detected. However, since their abundances are low and tools used for their corroboration are often not well characterized, their physiological relevance remains largely elusive. Antibodies targeting modified nucleotides are often used but have limitations such as low affinity or specificity. Moreover, they are not always well characterized and due to the low abundance of the modification, particularly on mRNAs, generated data sets might resemble noise rather than specific modification patterns. Therefore, it is critical that the affinity and specificity is rigorously tested using complementary approaches. Here, we provide an experimental toolbox that allows for testing antibody performance prior to their use.


Subject(s)
Antibodies/genetics , Ribonucleotides/genetics , Nucleotides/genetics , RNA/genetics , RNA, Messenger/genetics
3.
Langmuir ; 35(45): 14704-14711, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31626734

ABSTRACT

The composition and physicochemical properties of biological membranes can be altered by diverse membrane integral and peripheral proteins as well as by small molecules, natural and synthetic. Diverse oligonucleotides have been shown to electrostatically interact with cationic and bivalent ion loaded zwitterionic liposomes, leading to the formation of oligonucleotide-liposome aggregates. However, interaction of RNAs with other membrane surfaces remains ill understood. We used the nonnatural RNA10 to investigate RNA binding to anionic and net-uncharged membrane surfaces. RNA10 had initially been selected in a screen for nonnatural RNA motives that bind to phosphatidylcholine liposomes in the presence of Mg2+. Here we show that interaction of defined RNA molecules with membrane surfaces crucially depends on electrostatic surface properties. Furthermore, RNA10 electrostatically binds to anionic lipid bilayers in the absence of Mg2+ or other bivalent cations, and this interaction leads to measurably changed physicochemical properties of the bilayer and the oligonucleotide. Thus, the structure of polyanionic RNA can be modulated via contact with negatively charged membrane surfaces and vice versa.


Subject(s)
Lipid Bilayers/chemistry , RNA/chemistry , Adsorption , Fluorescence Polarization , Particle Size , Surface Properties
4.
Methods ; 156: 102-109, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30394295

ABSTRACT

In the growing field of RNA modification, precipitation techniques using antibodies play an important role. However, little is known about their specificities and protocols are missing to assess their effectiveness. Here we present a method to assess enrichment factors after MeRIP-type pulldown experiments, here exemplified with a commercial antibody against N6-methyladenosine (m6A). Testing different pulldown and elution conditions, we measure enrichment factors of 4-5 using m6A-containing mRNAs against an unmodified control of identical sequence. Both types of mRNA carry 32P labels at different nucleotides, allowing their relative quantification in a mixture after digestion to nucleotides, separation by TLC and quantitative phosphorimaging of the labels.


Subject(s)
Adenosine Triphosphate/metabolism , Adenosine/analogs & derivatives , Immunoglobulin G/chemistry , Immunoprecipitation/methods , RNA, Messenger/genetics , Adenosine/chemistry , Adenosine/metabolism , Adenosine Triphosphate/chemistry , Cell-Free System/chemistry , Cell-Free System/metabolism , Chromatography, Thin Layer , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Isotope Labeling/methods , Methylation , Models, Molecular , Phosphorus Radioisotopes , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Front Immunol ; 8: 312, 2017.
Article in English | MEDLINE | ID: mdl-28392787

ABSTRACT

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...