Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Heliyon ; 10(11): e31728, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845989

ABSTRACT

Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.

3.
Biomed Pharmacother ; 174: 116376, 2024 May.
Article in English | MEDLINE | ID: mdl-38508080

ABSTRACT

Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aß biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.


Subject(s)
Alzheimer Disease , Polyphenols , Alzheimer Disease/drug therapy , Alzheimer Disease/diet therapy , Alzheimer Disease/metabolism , Polyphenols/pharmacology , Humans , Animals , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Nanoparticles/chemistry , Diet , Amyloid beta-Peptides/metabolism , Biological Availability
4.
J Infect Public Health ; 17(4): 559-572, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367570

ABSTRACT

Internet of Medical Things (IoMT) is an emerging subset of Internet of Things (IoT), often called as IoT in healthcare, refers to medical devices and applications with internet connectivity, is exponentially gaining researchers' attention due to its wide-ranging applicability in biomedical systems for Smart Healthcare systems. IoMT facilitates remote health biomedical system and plays a crucial role within the healthcare industry to enhance precision, reliability, consistency and productivity of electronic devices used for various healthcare purposes. It comprises a conceptualized architecture for providing information retrieval strategies to extract the data from patient records using sensors for biomedical analysis and diagnostics against manifold diseases to provide cost-effective medical solutions, quick hospital treatments, and personalized healthcare. This article provides a comprehensive overview of IoMT with special emphasis on its current and future trends used in biomedical systems, such as deep learning, machine learning, blockchains, artificial intelligence, radio frequency identification, and industry 5.0.


Subject(s)
Artificial Intelligence , Internet , Humans , Reproducibility of Results , Health Facilities , Machine Learning
5.
Reprod Biol Endocrinol ; 22(1): 22, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350931

ABSTRACT

The quandary known as the Intracytoplasmic Sperm Injection (ICSI) paradox is found at the juncture of Assisted Reproductive Technology (ART) and 'andrological ignorance' - a term coined to denote the undervalued treatment and comprehension of male infertility. The prevalent use of ICSI as a solution for severe male infertility, despite its potential to propagate genetically defective sperm, consequently posing a threat to progeny health, illuminates this paradox. We posit that the meteoric rise in Industrial Revolution 4.0 (IR 4.0) and Artificial Intelligence (AI) technologies holds the potential for a transformative shift in addressing male infertility, specifically by mitigating the limitations engendered by 'andrological ignorance.' We advocate for the urgent need to transcend andrological ignorance, envisaging AI as a cornerstone in the precise diagnosis and treatment of the root causes of male infertility. This approach also incorporates the identification of potential genetic defects in descendants, the establishment of knowledge platforms dedicated to male reproductive health, and the optimization of therapeutic outcomes. Our hypothesis suggests that the assimilation of AI could streamline ICSI implementation, leading to an overall enhancement in the realm of male fertility treatments. However, it is essential to conduct further investigations to substantiate the efficacy of AI applications in a clinical setting. This article emphasizes the significance of harnessing AI technologies to optimize patient outcomes in the fast-paced domain of reproductive medicine, thereby fostering the well-being of upcoming generations.


Subject(s)
Infertility, Male , Sperm Injections, Intracytoplasmic , Male , Humans , Artificial Intelligence , Semen , Infertility, Male/diagnosis , Infertility, Male/genetics , Infertility, Male/therapy , Reproductive Techniques, Assisted
6.
Ann Clin Microbiol Antimicrob ; 23(1): 11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303011

ABSTRACT

Global impact of COVID-19 pandemic has heightened the urgency for efficient virus detection and identification of variants such as the Q57H mutation. Early and efficient detection of SARS-CoV-2 among densely populated developing countries is paramount objective. Although RT-PCR assays offer accuracy, however, dependence on expansive kits and availability of allied health resources pose an immense challenge for developing countries. In the current study, RT-LAMP based detection of SARS-Cov-2 with subsequent confirmation of Q57H variant through ARMS-PCR was performed. Among the 212 collected samples, 134 yielded positive results, while 78 tested negative using RT-LAMP. Oropharyngeal swabs of suspected individuals were collected and processed for viral RNA isolation. Isolated viral RNA was processed further by using either commercially available WarmStart Master Mix or our in house developed LAMP master mix separately. Subsequently, the end results of each specimen were evaluated by colorimetry. For LAMP assays, primers targeting three genes (ORF1ab, N and S) were designed using PrimerExplorer software. Interestingly, pooling of these three genes in single reaction tube increased sensitivity (95.5%) and specificity (93.5%) of LAMP assay. SARS-CoV-2 positive specimens were screened further for Q57H mutation using ARMS-PCR. Based on amplicon size variation, later confirmed by sequencing, our data showed 18.5% samples positive for Q57H mutation. Hence, these findings strongly advocate use of RT-LAMP-based assay for SARS-CoV-2 screening within suspected general population. Furthermore, ARMS-PCR also provides an efficient mean to detect prevalent mutations against SARS-Cov-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , Polymerase Chain Reaction , COVID-19 Testing
7.
ACS Omega ; 9(2): 2204-2219, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250414

ABSTRACT

Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.

8.
PLoS One ; 19(1): e0288317, 2024.
Article in English | MEDLINE | ID: mdl-38271350

ABSTRACT

The aim of this experiment was to find out whether the taurine supplementation in daily ration had an effect on quantity or quality of Duroc boar ejaculate. The experiment duration was from June to August, when it could assumed the possible occurrence of heat stress. For the study was chosen 12 Duroc boars of approximately the same age and condition. The control group of 6 Duroc boars was fed only by basic diet and the experimental group of 6 Duroc boars was fed by the same basic diet with supplementation of 15 g taurine/boar/day. Ejaculate was collected once a week by hand glowed technique. From ejaculate parameters were monitored volume of ejaculate, sperm concentration, total amount of sperm, morphologically abnormal sperm, taurine concentration and GSH/GSSH concentration. From microscopic analysis, results were statistically significant in motility in June and July (P<0.05). In biochemical results, a significant difference (P<0.05) has been found between the experimental groups in the concentrations of taurine as well as GSH/GSSG in ejaculate which indicates the effect of heat stress on boars during the experimental period.


Subject(s)
Semen , Sperm Motility , Swine , Male , Animals , Seasons , Spermatozoa , Semen Analysis , Dietary Supplements
9.
Sci Rep ; 14(1): 1620, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238404

ABSTRACT

The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.


Subject(s)
Polyhydroxyalkanoates , Polysorbates , Polyhydroxyalkanoates/chemistry , Biopolymers , Amino Acids , Plastics
10.
Front Nutr ; 10: 1258516, 2023.
Article in English | MEDLINE | ID: mdl-38045808

ABSTRACT

Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.

11.
Heliyon ; 9(11): e22371, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053912

ABSTRACT

Limb problems are one of the most common problems with fast-growing meat-type chickens. Various bone abnormalities, which can lead to limping, bone weakness, or even fractures, bring overall discomfort to birds and a loss of production. Genetic aspects are often associated with these side effects on bone stability and are also cited as the dominant cause. These points to a close negative relationship of genetic selection for rapid growth with traits involved in bone integrity. Due to the assumption of an additive genetic background, improvements through genetic tools can be used. Our study is focused on selected genes of important signaling pathways for bone metabolism. We tried to detect polymorphisms that would show associations with selected bone parameters in a total of 48 broilers. Those were fast-growing Ross 308 hybrids and slow-growing Hubbard M22BxJA87A hybrids. The TNFRSF11A and WISP1 genes were tested. A total of fourteen polymorphisms were found, three of them were synonymous and five in the intron. In the case of four polymorphisms found in exons of the TNFRSF11A gene (c.11G > T, c.31G > A, c.37C > G, c.514G > A), associations with the observed bone parameters (bone strength, bone dimensions and bone mass) were demonstrated. The genetic architecture of bone traits is not fully understood, therefore the present study and the knowledge gained can help to increase the potential in poultry breeding processes and thus reduce the death of individuals.

12.
Biomolecules ; 13(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38136630

ABSTRACT

Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.


Subject(s)
Semen , Spermatozoa , Male , Humans , Epigenesis, Genetic , Phenotype , Reproduction/genetics , Disease Susceptibility
13.
Heliyon ; 9(11): e21824, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034707

ABSTRACT

These days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (CS-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size. Synthesized carbon dots formed a stable complex with plasmid DNA (EGFP-N1) and miRNA-153 that protected DNA/miRNA from serum-induced degradation. In-vitro cytotoxicity analysis revealed minimal cytotoxicity in cancer cell lines (A549 and MDA-MB-231). In-vitro transfection of EGFP-N1 plasmid DNA with PEI2-CDs, PEI25-CDs and CP25-CDs demonstrated that these CDs could strongly transfect A549 and MDA-MB-231 cells. The highest EGFP-N1 plasmid transfection efficiency was observed with PEI2-CDs at a weight ratio of 32:1. PEI25-CDs polyplex showed maximum transfection at a weight ratio of 8:1 in A549 at a weight ratio of 16:1 in MDA-MB-231 cells. CP25-CDs exhibited the highest transfection at a weight ratio of 16:1 in both cell lines. The in-vitro transfection of target miRNA, i.e., miR-153 in A549 and MDA-MB-231 cells with PEI2-CDs, PEI25-CDs, and CP25-CDs suggested successful transfer of miR-153 into cells which induced significant cell death in both cell lines. Importantly, CS-CDs and CP2-CDs could be tolerated by cells up to 200 µg/mL concentration, while PEI2-CDs, PEI25-CDs, and CP25-CDs showed non-cytotoxic behavior at low concentrations (25 µg/mL). Together, these results suggest that a combination of carbon dots synthesized from chitosan and PEI (CP25-CDs) could be a novel vector for transfection nucleic acids that can be utilized in cancer therapy.

14.
Antibiotics (Basel) ; 12(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887228

ABSTRACT

Streptococcus uberis is one of the most important causative agents of mastitis and is a common reason for the use of antimicrobials in dairy cows. In this study, we assessed the antimicrobial susceptibility of 667 S. uberis isolates originating from 216 Czech dairy farms collected between 2019 and 2023 using the broth microdilution method. We tested 140 of the isolates for the presence of antimicrobial genes using whole-genome sequencing and evaluated their relationship with phenotypic resistance. Streptococcus uberis isolates showed high levels of resistance to tetracycline (59%), followed by streptomycin (38%) and clindamycin (29%). Although all of the isolates were susceptible to beta-lactams, a relatively high percentage of intermediately susceptible isolates was recorded for ampicillin (44%) and penicillin (18%). The isolates were mainly resistant to tetracycline alone (31.3%); the second most frequent occurrence of the phenotypic profile was simultaneous resistance to tetracycline, streptomycin, and clindamycin (16.6%). The occurrence of antibiotic resistance genes did not always match the phenotypic results; in total, 36.8% of isolates that possessed the ant(6)-Ia gene did not show phenotypic resistance to streptomycin. To a lesser extent, silent genes were also detected in clindamycin and tetracycline. This study confirmed the high susceptibility of S. uberis to penicillins used as first-line antimicrobials for S. uberis mastitis treatment.

15.
ACS Omega ; 8(38): 34995-35011, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779948

ABSTRACT

Nonhealed wounds are one of the most dangerous side effects of type-2 diabetes, which is linked to a high frequency of bacterial infections around the globe that eventually results in amputation of limbs. The present investigation aimed to explore the drug-loaded (naringenin) hydrogel system for chronic wound healing. The hydrogel membranes comprising Na-alginate with F-127 and poly(vinyl alcohol) were developed to treat chronic wounds using the quality-by-design (QbD) approach. The optimized formulation was tested for various parameters, such as swelling, gel fraction, water vapor transition rate (WVTR), etc. In vitro evaluation indicated that a drug-loaded hydrogel displayed better tissue adhesiveness and can release drugs for a prolonged duration of 12 h. Scratch assay performed on L929 cell lines demonstrated good cell migration. The diabetic wound healing potential of the hydrogel membrane was assessed in streptozotocin-induced male Wistar rats (50 mg/kg). Higher rates of wound closure, re-epithelialization, and accumulation of collagen were seen in in vivo experiments. Histopathologic investigation correspondingly implied that the drug-loaded hydrogel could enhance dermal wound repair. The improved antimicrobial and antioxidant properties with expedited healing indicated that the drug-loaded hydrogel is a perfect dressing for chronic wounds.

16.
Front Microbiol ; 14: 1214870, 2023.
Article in English | MEDLINE | ID: mdl-37547682

ABSTRACT

Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.

17.
Front Nutr ; 10: 1126579, 2023.
Article in English | MEDLINE | ID: mdl-37545572

ABSTRACT

Ulcerative colitis (UC) is presently considered a multifactorial pathology, which may lead to persistent inflammatory action of the gastrointestinal tract (GIT) because of an improperly managed immunological reactivity to the intestinal microbiota found in the GIT. The immune response to common commensal microbes plays an essential role in intestinal inflammation related to UC synbiotics, and it is an important element in the optimal therapy of UC. Therefore, synbiotics, i.e., a mixture of prebiotics and probiotics, may help control the diseased state. Synbiotics alleviate the inflammation of the colon by lowering the reactive oxygen species (ROS) and improving the level of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Prebiotic supplementation is not a common practice at the moment, despite numerous research findings proving that the benefits of both probiotics and prebiotics encourage their continued existence and positioning in the GIT, with positive effects on human health by managing the inflammatory response. However, the fact that there have been fewer studies on the treatment of UC with different probiotics coupled with selected prebiotics, i.e., synbiotics, and the outcomes of these studies have been very favorable. This evidence-based study explores the possible role of ROS, SOD, and synbiotics in managing the UC. The proposed review also focuses on the role of alteration of gut microbiota, antioxidant defense in the gastrointestinal tract, and the management of UC. Thus, the current article emphasizes oxidative stress signaling in the GI tract, oxidative stress-based pathomechanisms in UC patients, and UC therapies inhibiting oxidative stress' effects.

18.
Animals (Basel) ; 13(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570269

ABSTRACT

Selenium is an essential compound which can influence the fertility of boars by a greater margin. In past decades, research was mainly focused on a bioavailability of various selenium forms and the effect on semen quality. Recently, nanotechnology has expanded the possibilities of selenium supplementation research. Twenty-one Duroc boars (three groups with seven boars each) were included in this experiment with the first group being a control group with no selenium supplementation, and the second group being supplemented with 0.3 mg Se/kg of selenium in inorganic form of Na2SeO3. The third group was supplemented with selenium nanoparticles (100 nm) at the same dose as that of the second group. The experiment lasted for 126 days (three spermatogenesis cycles of boars) and the antioxidant parameters of boar semen were analysed at 42, 84 and 126 days, respectively. The antioxidant parameters (DPPH, FRAP, DMPD, GSH, GSSG) were not influenced by both Se2NO3 and selenium nanoparticle supplementation during this experiment. At the end of the monitored period, significantly higher (p < 0.004) antioxidant readings were observed by using the ABTS method but not the DPPH, DMPD and FRAP methods on the supplemented groups compared to the control. Moreover, selenium-nanoparticle-supplemented groups showed elevated glutathione peroxidase activity in the seminal fluid (p < 0.008). However, the selenium nanoparticle supplementation has not shown an improving effect on sperm quality. This could be considered as a safe alternative to inorganic selenium as well as having a potential to enhance the antioxidant properties of the semen of boars.

19.
Front Endocrinol (Lausanne) ; 14: 1201198, 2023.
Article in English | MEDLINE | ID: mdl-37560308

ABSTRACT

Colorectal cancer (CRC) is one of the most deaths causing diseases worldwide. Several risk factors including hormones like insulin and insulin like growth factors (e.g., IGF-1) have been considered responsible for growth and progression of colon cancer. Though there is a huge advancement in the available screening as well as treatment techniques for CRC. There is no significant decrease in the mortality of cancer patients. Moreover, the current treatment approaches for CRC are associated with serious challenges like drug resistance and cancer re-growth. Given the severity of the disease, there is an urgent need for novel therapeutic agents with ideal characteristics. Several pieces of evidence suggested that natural products, specifically medicinal plants, and derived phytochemicals may serve as potential sources for novel drug discovery for various diseases including cancer. On the other hand, cancer cells like colon cancer require a high basal level of reactive oxygen species (ROS) to maintain its own cellular functions. However, excess production of intracellular ROS leads to cancer cell death via disturbing cellular redox homeostasis. Therefore, medicinal plants and derived phytocompounds that can enhance the intracellular ROS and induce apoptotic cell death in cancer cells via modulating various molecular targets including IGF-1 could be potential therapeutic agents. Alkaloids form a major class of such phytoconstituents that can play a key role in cancer prevention. Moreover, several preclinical and clinical studies have also evidenced that these compounds show potent anti-colon cancer effects and exhibit negligible toxicity towards the normal cells. Hence, the present evidence-based study aimed to provide an update on various alkaloids that have been reported to induce ROS-mediated apoptosis in colon cancer cells via targeting various cellular components including hormones and growth factors, which play a role in metastasis, angiogenesis, proliferation, and invasion. This study also provides an individual account on each such alkaloid that underwent clinical trials either alone or in combination with other clinical drugs. In addition, various classes of phytochemicals that induce ROS-mediated cell death in different kinds of cancers including colon cancer are discussed.


Subject(s)
Alkaloids , Colonic Neoplasms , Humans , Reactive Oxygen Species/metabolism , Insulin-Like Growth Factor I , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Alkaloids/therapeutic use , Hormones/therapeutic use
20.
Animals (Basel) ; 13(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627355

ABSTRACT

Heat stress (HS) in poultry husbandry is an important stressor and with increasing global temperatures its importance will increase. The negative effects of stress on the quality and quantity of poultry production are described in a range of research studies. However, a lack of attention is devoted to the impacts of HS on individual chicken immune cells and whole lymphoid tissue in birds. Oxidative stress and increased inflammation are accompanying processes of HS, but with deleterious effects on the whole organism. They play a key role in the inflammation and oxidative stress of the chicken immune system. There are a range of strategies that can help mitigate the adverse effects of HS in poultry. Phytochemicals are well studied and some of them report promising results to mitigate oxidative stress and inflammation, a major consequence of HS. Current studies revealed that mitigating these two main impacts of HS will be a key factor in solving the problem of increasing temperatures in poultry production. Improved function of the chicken immune system is another benefit of using phytochemicals in poultry due to the importance of poultry health management in today's post pandemic world. Based on the current literature, baicalin and baicalein have proven to have strong anti-inflammatory and antioxidative effects in mammalian and avian models. Taken together, this review is dedicated to collecting the literature about the known effects of HS on chicken immune cells and lymphoid tissue. The second part of the review is dedicated to the potential use of baicalin and baicalein in poultry to mitigate the negative impacts of HS on poultry production.

SELECTION OF CITATIONS
SEARCH DETAIL
...