Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Ecol Evol ; 9(16): 8965-8977, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31462995

ABSTRACT

Seed dispersal distance (SDD) critically influences the survival of seedlings, spatial patterns of genetic diversity within plant populations, and gene flow among plant populations. In animal-dispersed species, foraging behavior and movement patterns determine SDD. Direct observations of seed dispersal events by animals in natural plant populations are mostly constrained by the high mobility and low visibility of seed dispersers. Therefore, diverse alternative methods are used to estimate seed dispersal distance, but direct comparisons of these approaches within the same seed dispersal system are mostly missing.We investigated two plant species with different life history traits, Leonia cymosa and Parkia panurensis, exclusively dispersed by two tamarin species, Saguinus mystax and Leontocebus nigrifrons. We compared SDD estimates obtained from direct observations, genetic identification of mother plants from seed coats, parentage analysis of seedlings/saplings, and phenomenological and mechanistic modeling approaches.SDD derived from the different methods ranged between 158 and 201 m for P. panurensis and between 178 and 318 m for L. cymosa. In P. panurensis, the modeling approaches resulted in moderately higher estimates than observations and genotyping of seed coats. In L. cymosa, parentage analysis resulted in a lower estimate than all other methods. Overall, SDD estimates for P. panurensis (179 ± 16 m; mean ± SD) were significantly lower than for L. cymosa (266 ± 59 m; mean ± SD).Differences among methods were related to processes of the seed dispersal loop integrated by the respective methods (e.g., seed deposition or seedling distribution). We discuss the merits and limitations of each method and highlight the aspects to be considered when comparing SDD derived from different methodologies. Differences among plant species were related to differences in reproductive traits influencing gut passage time and feeding behavior, highlighting the importance of plant traits on animal-mediated seed dispersal distance.

3.
Sci Rep ; 9(1): 10356, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346187

ABSTRACT

Increasingly large proportions of tropical forests are anthropogenically disturbed. Where natural regeneration is possible at all, it requires the input of plant seeds through seed dispersal from the forest matrix. Zoochorous seed dispersal - the major seed dispersal mode for woody plants in tropical forests - is particularly important for natural regeneration. In this study, covering a period of more than 20 years, we show that small New World primates, the tamarins Saguinus mystax and Leontocebus nigrifrons, increase their use of an anthropogenically disturbed area over time and disperse seeds from primary forest tree species into this area. Through monitoring the fate of seeds and through parentage analyses of seedlings of the legume Parkia panurensis from the disturbed area and candidate parents from the primary forest matrix, we show that tamarin seed dispersal is effective and contributes to the natural regeneration of the disturbed area.


Subject(s)
Callitrichinae , Forests , Seed Dispersal , Animals , Biodiversity , Conservation of Natural Resources , Fabaceae/genetics , Fabaceae/growth & development , Feeding Behavior , Humans , Periodicity , Seasons , Seedlings/genetics , Seedlings/growth & development , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...