Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35453637

ABSTRACT

This work analyses the results of research regarding the predisposition of genetic hematological risks associated with secondary polyglobulia. The subjects of the study were selected based on shared laboratory markers and basic clinical symptoms. JAK2 (Janus Kinase 2) mutation negativity represented the common genetic marker of the subjects in the sample of interest. A negative JAK2 mutation hypothetically excluded the presence of an autonomous myeloproliferative disease at the time of detection. The parameters studied in this work focused mainly on thrombotic, immunological, metabolic, and cardiovascular risks. The final goal of the work was to discover the most significant key markers for the diagnosis of high-risk patients and to exclude the less important or only complementary markers, which often represent a superfluous economic burden for healthcare institutions. These research results are applicable as a clinical guideline for the effective diagnosis of selected parameters that demonstrated high sensitivity and specificity. According to the results obtained in the present research, groups with a high incidence of mutations were evaluated as being at higher risk for polycythemia vera disease. It was not possible to clearly determine which of the patients examined had a higher risk of developing the disease as different combinations of mutations could manifest different symptoms of the disease. In general, the entire study group was at risk for manifestations of polycythemia vera disease without a clear diagnosis. The group with less than 20% incidence appeared to be clinically insignificant for polycythemia vera testing and thus there is a potential for saving money in mutation testing. On the other hand, the JAK V617F (somatic mutation of JAK2) parameter from this group should be investigated as it is a clear exclusion or confirmation of polycythemia vera as the primary disease.

2.
Sensors (Basel) ; 20(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947977

ABSTRACT

Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.


Subject(s)
Algorithms , Electromyography , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Wavelet Analysis , Humans , Normal Distribution
3.
Sensors (Basel) ; 20(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629993

ABSTRACT

The subject of the submitted work is the proposal of electrodes for the continual measurement of the glucose concentration for the purpose of specifying further hemodynamic parameters. The proposal includes the design of the electronic measuring system, the construction of the electrodes themselves and the functionality of the entire system, verified experimentally using various electrode materials. The proposed circuit works on the basis of micro-ammeter measuring the size of the flowing electric current and the electrochemical measurement method is used for specifying the glucose concentration. The electrode system is comprised of two electrodes embedded in a silicon tube. The solution consists of the measurement with three types of materials, which are verified by using three solutions with a precisely given concentration of glucose in the form of a mixed solution and enzyme glucose oxidase. For the testing of the proposed circuit and the selection of a suitable material, the testing did not take place on measurements in whole blood. For the construction of the electrodes, the three most frequently used materials for the construction of electrodes used in clinical practice for sensing biopotentials, specifically the materials Ag/AgCl, Cu and Au, were used. The performed experiments showed that the material Ag/AgCl, which had the greatest sensitivity for the measurement even without the enzyme, was the most suitable material for the electrode. This conclusion is supported by the performed statistical analysis. On the basis of the testing, we can come to the conclusion that even if the Ag/AgCl electrode appears to be the most suitable, showing high stability, gold-plated electrodes showed stability throughout the measurement similarly to Ag/AgCl electrodes, but did not achieve the same qualities in sensitivity and readability of the measured results.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Glucose Oxidase , Glucose/analysis , Gold
SELECTION OF CITATIONS
SEARCH DETAIL
...