Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 16639, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024188

ABSTRACT

Particle isolation techniques are in the spotlight of many areas of science and engineering. In food industry, a harmful bacterial activity can be prevented with the help of separation schemes. In health care, isolation techniques are used to distinguish cancer and healthy cells or in therapy for Alzheimer's and Parkinson's diseases. We consider a cloud of Brownian particles of different sizes moving in a periodic potential and subjected to an unbiased driving as well as a constant force. We reveal an efficient separation strategy via the counterintuitive effect of negative mobility when particles of a given size are transported in a direction opposite to the applied constant force. We demonstrate a tunable separation solution in which size of the particle undergoing separation may be controlled by variation of the parameters of the external force applied to the system. This approach is an important step towards the development of point-of-care lab-on-a-chip devices.

2.
Phys Rev Lett ; 122(7): 070602, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848611

ABSTRACT

A prerequisite for isolating diseased cells requires a mechanism for effective mass-based separation. This objective, however, is generally rather challenging because typically no valid correlation exists between the size of the particles and their mass value. We consider an inertial Brownian particle moving in a symmetric periodic potential and subjected to an externally applied unbiased harmonic driving in combination with a constant applied bias. In doing so, we identify a most efficient separation scheme which is based on the anomalous transport feature of negative mobility, meaning that the immersed particles move in the direction opposite to the acting bias. This work is the first of its kind in demonstrating a tunable separation mechanism in which the particle mass targeted for isolation is effectively controlled over a regime of nearly 2 orders of mass magnitude upon changing solely the frequency of the external harmonic driving. This approach may provide mass selectivity required in present and future separation of a diversity of nano- and microsized particles of either biological or synthetic origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...