Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 145(7): 074303, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27544101

ABSTRACT

The fragmentations of iodine cyanide ions created with 2 to 8 positive charges by photoionization from inner shells with binding energies from 59 eV (I 4d) to ca. 900 eV (I 3p) have been examined by multi-electron and multi-ion coincidence spectroscopy with velocity map imaging ion capability. The charge distributions produced by hole formation in each shell are characterised and systematic effects of the number of charges and of initial charge localisation are found.

2.
Rev Sci Instrum ; 86(10): 103113, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520946

ABSTRACT

The Pixel Imaging Mass Spectrometry (PImMS) camera is used in proof-of-principle three-dimensional imaging experiments on the photodissociation of carbonyl sulfide and ethyl iodide at wavelengths around 230 nm and 245 nm, respectively. Coupling the PImMS camera with DC-sliced velocity-map imaging allows the complete three-dimensional Newton sphere of photofragment ions to be recorded on each laser pump-probe cycle with a timing precision of 12.5 ns, yielding velocity resolutions along the time-of-flight axis of around 6%-9% in the applications presented.

3.
Rev Sci Instrum ; 83(11): 114101, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23206074

ABSTRACT

Imaging mass spectrometry is a powerful technique that allows chemical information to be correlated to a spatial coordinate on a sample. By using stigmatic ion microscopy, in conjunction with fast cameras, multiple ion masses can be imaged within a single experimental cycle. This means that fewer laser shots and acquisition cycles are required to obtain a full data set, and samples suffer less degradation as overall collection time is reduced. We present the first spatial imaging mass spectrometry results obtained with a new time-stamping detector, named the pixel imaging mass spectrometry (PImMS) sensor. The sensor is capable of storing multiple time stamps in each pixel for each time-of-flight cycle, which gives it multi-mass imaging capabilities within each pixel. A standard velocity-map ion imaging apparatus was modified to allow for microscope mode spatial imaging of a large sample area (approximately 5 × 5 mm(2)). A variety of samples were imaged using PImMS and a conventional camera to determine the specifications and possible applications of the spectrometer and the PImMS camera.

SELECTION OF CITATIONS
SEARCH DETAIL
...