Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
ACS Appl Energy Mater ; 5(9): 11229-11240, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36185814

ABSTRACT

Niobium oxides are an emerging class of anode materials for use in high-power lithium-ion batteries. Galvanostatic cycling and electrochemical impedance spectroscopy (EIS) were used in this study to investigate the influence of electrode porosity, electrode mass ratio, and cycling rate on the capacity, cycle life, and ionic conductivity of Li-ion battery cells based on a modified micron-sized MoNb12O33 (MNO) anode powder. Both electrode and cell designs were found to have a significant impact on the rate performance and cycle life of Li-ion half- and full cells. A higher specific capacity, improved rate performance, and a longer cycle life were obtained in both anode and cathode half-cells by lowering the electrode porosity through calendaring. MNO/Li half-coin cells displayed excellent cyclability, reaching 80% state of health (SOH) after 600 cycles at C/2 charge and 1C discharge. MNO/NMC622 full-coin cells displayed a high capacity of 179 mAh g-1 at 100 mA g-1 (0.5 mA cm-2) and excellent cyclability at 25 °C, reaching 70% SOH after over 1000 cycles at 1 mA cm-2 after optimizing their N/P ratio. Excellent cyclability was obtained at both 1C/1C and fast 2C/2C cycling, reaching 80% SOH after 700 and 470 cycles, respectively. Full-coin and small pouch cells had outstanding rate performance as they could be charged from 0 to 84% capacity in less than 5 min at 10 mA cm-2 and to 70% SOC in 120 s at 20 mA cm-2.

2.
Phys Chem Chem Phys ; 24(35): 20709-20720, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35912959

ABSTRACT

This study uses molecular dynamics and barrier searching methods to investigate the diffusion and clustering of helium in plutonium dioxide. Such fundamental understanding of helium behaviour is required because radiogenic helium generated from the alpha decay of Pu nuclei can accumulate over time and storage of spent nuclear fuel needs to be safe and secure. The results show that in perfect PuO2, interstitial He is not mobile over nanosecond time scales at temperatures below 1500 K with the lowest diffusion barrier being 2.4 eV. Above this temperature O vacancies can form and diffusion increases. The He diffusion barrier drops to 0.6 eV when oxygen vacancies are present. High temperature simulations show that the key He diffusion mechanism is oxygen vacancy assisted inter-site hopping rather than the direct path between adjacent interstitial sites. Unlike oxygen vacancies, plutonium vacancies act as helium traps. However, isolated substitutional He at Pu sites can be easily ejected through displacement by neighbouring interstitial Pu atoms. High temperature MD simulations show that helium can diffuse into clusters with the majority of helium clusters which form over nanosecond time scales having a He : vacancy ratio below 1 : 1. Further static calculations show that a ∼3.5 : 1 He : vacancy ratio is the largest possible for an energetically stable helium cluster. Schottky defects act as seed points for He cluster growth and a high local concentrations of He can create such defects which then pin the growing He cluster.

3.
Chem Mater ; 34(9): 4153-4165, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35573110

ABSTRACT

O3-type layered oxide materials are considered to be a highly suitable cathode for sodium-ion batteries (NIBs) due to their appreciable specific capacity and energy density. However, rapid capacity fading caused by serious structural changes and interfacial degradation hampers their use. A novel Sn-modified O3-type layered NaNi1/3Fe1/3Mn1/3O2 cathode is presented, with improved high-voltage stability through simultaneous bulk Sn doping and surface coating in a scalable one-step process. The bulk substitution of Sn4+ stabilizes the crystal structure by alleviating the irreversible phase transition and lattice structure degradation and increases the observed average voltage. In the meantime, the nanolayer Sn/Na/O composite on the surface effectively inhibits surface parasitic reactions and improves the interfacial stability during cycling. A series of Sn-modified materials are reported. An 8%-Sn-modified NaNi1/3Fe1/3Mn1/3O2 cathode exhibits a doubling in capacity retention increase after 150 cycles in the wide voltage range of 2.0-4.1 V vs Na/Na+ compared to none, and 81% capacity retention is observed after 200 cycles in a full cell vs hard carbon. This work offers a facile process to simultaneously stabilize the bulk structure and interface for the O3-type layered cathodes for sodium-ion batteries and raises the possibility of similar effective strategies to be employed for other energy storage materials.

4.
Chemistry ; 28(6): e202103442, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-34851537

ABSTRACT

Lithium garnets are promising solid-state electrolytes for next-generation lithium-ion batteries. These materials have high ionic conductivity, a wide electrochemical window and stability with Li metal. However, lithium garnets have a maximum limit of seven lithium atoms per formula unit (e.g., La3 Zr2 Li7 O12 ), before the system transitions from a cubic to a tetragonal phase with poor ionic mobility. This arises from full occupation of the Li sites. Hence, the most conductive lithium garnets have Li between 6-6.55 Li per formula unit, which maintains the cubic symmetry and the disordered Li sub-lattice. The tetragonal phase, however, forms the highly conducting cubic phase at higher temperatures, thought to arise from increased cell volume and entropic stabilisation permitting Li disorder. However, little work has been undertaken in understanding the controlling factors of this phase transition, which could enable enhanced dopant strategies to maintain room temperature cubic garnet at higher Li contents. Here, a series of nine tetragonal garnets were synthesised and analysed by variable temperature XRD to understand the dependence of site substitution on the phase transition temperature. Interestingly the octahedral site cation radius was identified as the key parameter for the transition temperature with larger or smaller dopants altering the transition temperature noticeably. A site substitution was, however, found to make little difference irrespective of significant changes to cell volume.

6.
Chemistry ; 27(38): 9763-9767, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33908660

ABSTRACT

A new vacancy ordered, anion deficient perovskite modification with composition of BaCoO2.67 (Ba3 Co3 O8 □1 ) has been prepared via a two-step heating process. Combined Rietveld analysis of neutron and X-ray powder diffraction data shows a novel ordering of oxygen vacancies not known before for barium cobaltates. A combination of neutron powder diffraction, magnetic measurements, and density functional theory (DFT) studies confirms G-type antiferromagnetic ordering. From impedance measurements, the electronic conductivity of the order of 10-4  S cm-1 is determined. Remarkably, the bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is found to be comparable to that of Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-y , confirming that charge-ordered anion deficient non-cubic perovskites can be highly efficient catalysts.

7.
Proc Biol Sci ; 287(1941): 20202482, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33323080

ABSTRACT

Many animals produce coordinated signals, but few are more striking than the elaborate male-female vocal duets produced by some tropical songbirds. Yet, little is known about the factors driving the extreme levels of vocal coordination between mated pairs in these taxa. We examined evolutionary patterns of duet coordination and their potential evolutionary drivers in Neotropical wrens (Troglodytidae), a songbird family well known for highly coordinated duets. Across 23 wren species, we show that the degree of coordination and precision with which pairs combine their songs into duets varies by species. This includes some species that alternate their song phrases with exceptional coordination to produce rapidly alternating duets that are highly consistent across renditions. These highly coordinated, consistent duets evolved independently in multiple wren species. Duet coordination and consistency are greatest in species with especially long breeding seasons, but neither duet coordination nor consistency are correlated with clutch size, conspecific abundance or vegetation density. These results suggest that tightly coordinated duets play an important role in mediating breeding behaviour, possibly by signalling commitment or coalition of the pair to mates and other conspecifics.


Subject(s)
Songbirds/physiology , Vocalization, Animal , Animals , Biological Evolution , Female , Male , Pair Bond , Reproduction
8.
Dalton Trans ; 49(40): 14280-14289, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33030155

ABSTRACT

Aluminium-doped lanthanum silicate (LSAO) apatite-type compounds have been considered as promising candidates for substituting yttria-stabilized zirconia (YSZ) as electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC). Nevertheless, not many materials have been reported to work as cathodes in a LSAO apatite-based cell. In the present work, eight different strontium and cobalt-free compounds with a perovskite-type structure and the general composition LaM1-xNxO3-δ (where M = Fe, Cr, Mn; N = Cu, Ni; and x = 0.2, 0.3) have been tested. This study includes the synthesis and structural characterization of the compounds, as well as thermomechanical and chemical compatibility tests between them. Functional characterization of the individual components has been performed by electrochemical impedance spectroscopy (EIS). Apatite/perovskite symmetrical cells were used to measure area-specific resistance (ASR) of the half cell in an intermediate temperature range (500-850 °C) both with and without DC bias. According to its electrochemical behaviour, LaFe0.8Cu0.2O3-δ is the most promising material for IT-SOFC among the compositions tested since its ASR is similar to that of the traditional (LaxSr1-x)MnO3 (LSM) cathode.

9.
Dalton Trans ; 49(35): 12466, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32845251

ABSTRACT

Correction for 'X-ray pair distribution function analysis and electrical and electrochemical properties of cerium doped Li5La3Nb2O12 garnet solid-state electrolyte' by Bo Dong et al., Dalton Trans., 2020, 49, 11727-11735, DOI: 10.1039/d0dt02112a.

10.
Dalton Trans ; 49(33): 11727-11735, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32797132

ABSTRACT

Garnet solid state electrolytes have been considered as potential candidates to enable next generation all solid state batteries (ASSBs). To facilitate the practical application of ASSBs, a high room temperature ionic conductivity and a low interfacial resistance between solid state electrolyte and electrodes are essential. In this work, we report a study of cerium doped Li5La3Nb2O12 through X-ray pair distribution function analysis, impedance spectroscopy and electrochemical testing. The successful cerium incorporation was confirmed by both X-ray diffraction refinement and X-ray pair distribution function analysis, showing the formation of an extensive solid solution. The local bond distances for Ce and Nb on the octahedral site were determined using X-ray pair distribution function analysis, illustrating the longer bond distances around Ce. This Ce doping strategy was shown to give a significant enhancement in conductivity (1.4 × 10-4 S cm-1 for Li5.75La3Nb1.25Ce0.75O12, which represents one of the highest conductivities for a garnet with less than 6 Li) as well as a dramatically decreased interfacial resistance (488 Ω cm2 for Li5.75La3Nb1.25Ce0.75O12). In order to demonstrate the potential of this doped system for use in ASSBs, the long term cycling of a Li//garnet//Li symmetric cell over 380 h has been demonstrated.

11.
Nature ; 578(7794): E20, 2020 02.
Article in English | MEDLINE | ID: mdl-31959987

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Inorg Chem ; 59(2): 1153-1163, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31880431

ABSTRACT

Within this study, we show that a sequence of substitutive topochemical fluorination of the n = 2 Ruddlesden-Popper type compounds Sr3Ti2O7 to Sr3Ti2O5F4 followed by reductive topochemical defluorination reactions between the oxyfluoride and the reducing agent sodium hydride allows for a substantial reduction of the oxidation state of Ti due to selective extraction and hydride substitution of fluoride ions. The oxyfluoride Sr3Ti2O5F4 has been synthesized and characterized structurally for the first time. The defluorination experiments have been conducted at temperatures as low as 300 °C, enabling also the reduction of this metastable compound. The evolution of phase fractions and unit cell volumes of various reduced phases as well as of side products has been monitored by an X-ray diffraction study as a function of the amount of sodium hydride used. Strong structural changes within the reduced phases, involving considerable decreases in the c lattice parameters partly accompanied by symmetry, lowering have been observed. To gain a deeper understanding of the structural changes, selected reduction reaction products have been further investigated by coupled analysis of X-ray and neutron powder diffraction data. Moreover, changes in the oxidation state of Ti have been studied using magnetic measurements and X-ray photoelectron spectroscopy examining differences between the bulk and the surface properties. Additionally, similarities and differences between previously published results on the topochemical defluorination of the n = 1 Ruddlesden-Popper type compound Sr2TiO3F2 are discussed.

13.
Nature ; 575(7781): 75-86, 2019 11.
Article in English | MEDLINE | ID: mdl-31695206

ABSTRACT

Rapid growth in the market for electric vehicles is imperative, to meet global targets for reducing greenhouse gas emissions, to improve air quality in urban centres and to meet the needs of consumers, with whom electric vehicles are increasingly popular. However, growing numbers of electric vehicles present a serious waste-management challenge for recyclers at end-of-life. Nevertheless, spent batteries may also present an opportunity as manufacturers require access to strategic elements and critical materials for key components in electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could provide a valuable secondary source of materials. Here we outline and evaluate the current range of approaches to electric-vehicle lithium-ion battery recycling and re-use, and highlight areas for future progress.

14.
Chem Commun (Camb) ; 55(20): 2920-2923, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30762042

ABSTRACT

A new highly oxygen deficient metastable modification of perovskite-related BaCoO2+δ (δ ∼ 0.01-0.02) has been prepared using high temperature reactions with short heating times. This defect rich compound has at least partially square planar coordination of the Co2+ ions, a highly unusual coordination environment for Co. Low temperature neutron powder diffraction showed a G-type antiferromagnetic ordering, confirmed by SQUID magnetic measurements, which indicate a high Néel temperature of 220 K. This work shows how novel defective phases can be synthesized by exploiting short reaction times in solid state synthesis, thus offering an alternative route for new materials synthesis.

15.
IUCrJ ; 6(Pt 1): 128-135, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30713710

ABSTRACT

The first fluorination of the cuspidine-related phases of Ln4(Al2O7□)O2 (where Ln = Sm, Eu, Gd) is reported. A low-temperature reaction with poly(vinyl-idene difluoride) lead to the fluorine being substituted in place of oxygen and inserted into the vacant position between the dialuminate groups. X-ray photoelectron spectroscopy shows the presence of the F 1s photoelectron together with an increase in Al 2p and rare-earth 4d binding energies supporting F incorporation. Energy-dispersive X-ray spectroscopy analyses are consistent with the formula Ln4(Al2O6F2)O2, confirming that substitution of one oxygen by two fluoride atoms has been achieved. Rietveld refinements show an expansion in the cell upon fluorination and confirm that the incorporation of fluoride in the Ln4(Al2O7□)O2 structure results in changes in Al coordination from four to five. Thus, the isolated tetrahedral dialuminate Al2O7 groups are converted to chains of distorted square-based pyramids. These structural results are also discussed based on Raman spectra.

16.
Dalton Trans ; 47(37): 12901-12906, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30113054

ABSTRACT

In this paper we report the synthesis of the new layered perovskite oxide carbonate, Ba3Yb2O5CO3. This phase is formed when 3BaCO3 : 1Yb2O3 mixtures are heated in air at temperatures ≤1000 °C, while above this temperature the carbonate is lost and the simple oxide phase Ba3Yb4O9 is observed. The structure of Ba3Yb2O5CO3 was determined from neutron diffraction studies and consists of a tripled perovskite with double Yb-O layers separated by carbonate layers, the first example of a material with such a structure. Further studies showed that analogous Ba3Ln2O5CO3 phases could be formed for other rare earths (Ln = Y, Dy, Ho, Er, Tm and Lu). The results highlight the ability of the perovskite structure to accommodate carbonate groups, and emphasise the need to consider their potential presence particularly for perovskite systems prepared in lower temperature synthesis routes.

17.
Dalton Trans ; 47(32): 11136-11145, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30043789

ABSTRACT

Perovskite oxides exhibiting mixed protonic and electronic conductivities have interesting applications in protonic ceramic fuel cells. In this work, we report on a hydrated phase of BaCoO1.80(OH)0.86 synthesized using nebulized spray pyrolysis. Structural analysis based on X-ray and neutron powder diffraction data showed that the compound is isotypic to BaFeO2.33(OH)0.33. The water loss behaviour was studied using simultaneous thermal analysis and high temperature X-ray diffraction, indicating that protons (respectively water) can be stabilized within the compound up to temperatures significantly above 673 K, confirmed by ex situ Fourier transform infrared spectroscopy studies. Impedance spectroscopy was used to determine the conductivity characteristics of BaCoO1.80(OH)0.86, finding and a total electrical conductivity in the order of 10-4 S cm-1 at ambient temperature with an activation energy of 0.28 eV.

18.
Inorg Chem ; 57(11): 6549-6560, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29749739

ABSTRACT

The Ruddlesden-Popper (K2NiF4) type phase La2NiO3F2 was prepared via a polymer-based fluorination of La2NiO4+ d. The compound was found to crystallize in the orthorhombic space group Cccm ( a = 12.8350(4) Å, b = 5.7935(2) Å, c = 5.4864(2) Å). This structural distortion results from an ordered half occupation of the interstitial anion layers and has not been observed previously for K2NiF4-type oxyfluoride compounds. From a combination of neutron and X-ray powder diffraction and 19F magic-angle spinning NMR spectroscopy, it was found that the fluoride ions are only located on the apical anion sites, whereas the oxide ions are located on the interstitial sites. This ordering results in a weakening of the magnetic Ni-F-F-Ni superexchange interactions between the perovskite layers and a reduction of the antiferromagnetic ordering temperature to 49 K. Below 30 K, a small ferromagnetic component was found, which may be the result of a magnetic canting within the antiferromagnetic arrangement and will be the subject of a future low-temperature neutron diffraction study. Additionally, density functional theory-based calculations were performed to further investigate different anion ordering scenarios.

19.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28794216

ABSTRACT

It has been observed in many songbird species that populations in noisy urban areas sing with a higher minimum frequency than do matched populations in quieter, less developed areas. However, why and how this divergence occurs is not yet understood. We experimentally tested whether chronic noise exposure during vocal learning results in songs with higher minimum frequencies in great tits (Parus major), the first species for which a correlation between anthropogenic noise and song frequency was observed. We also tested vocal plasticity of adult great tits in response to changing background noise levels by measuring song frequency and amplitude as we changed noise conditions. We show that noise exposure during ontogeny did not result in songs with higher minimum frequencies. In addition, we found that adult birds did not make any frequency or song usage adjustments when their background noise conditions were changed after song crystallization. These results challenge the common view of vocal adjustments by city birds, as they suggest that either noise itself is not the causal force driving the divergence of song frequency between urban and forest populations, or that noise induces population-wide changes over a time scale of several generations rather than causing changes in individual behaviour.


Subject(s)
Cities , Noise , Songbirds/physiology , Vocalization, Animal , Animals
20.
Phys Chem Chem Phys ; 18(37): 26284-26290, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27711759

ABSTRACT

Computational modelling techniques have been employed to investigate defects and ionic conductivity in Cd2GeO4. We show due to highly unfavourable intrinsic defect formation energies the ionic conducting ability of pristine Cd2GeO4 is extremely limited. The modelling results suggest trivalent doping on the Cd site as a viable means of promoting the formation of the oxygen interstitial defects. However, the defect cluster calculations for the first time explicitly suggest a strong association of the oxide defects to the dopant cations and tetrahedral units. Defect clustering is a complicated phenomenon and therefore not trivial to assess. In this study the trapping energies are explicitly quantified. The trends are further confirmed by molecular dynamic simulations. Despite this, the calculated diffusion coefficients do suggest an enhanced oxide ion mobility in the doped system compared to the pristine Cd2GeO4.

SELECTION OF CITATIONS
SEARCH DETAIL
...