Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 33(2): e2763, 2023 03.
Article in English | MEDLINE | ID: mdl-36264047

ABSTRACT

Mature forests provide important wildlife habitat and support critical ecosystem functions globally. Within the dry conifer forests of the western United States, past management and fire exclusion have contributed to forest conditions that are susceptible to increasingly severe wildfire and drought. We evaluated declines in conifer forest cover in the southern Sierra Nevada of California during a decade of record disturbance by using spatially comprehensive forest structure estimates, wildfire perimeter data, and the eDaRT forest disturbance tracking algorithm. Primarily due to the combination of wildfires, drought, and drought-associated beetle epidemics, 30% of the region's conifer forest extent transitioned to nonforest vegetation during 2011-2020. In total, 50% of mature forest habitat and 85% of high density mature forests either transitioned to lower density forest or nonforest vegetation types. California spotted owl protected activity centers (PAC) experienced greater canopy cover decline (49% of 2011 cover) than non-PAC areas (42% decline). Areas with high initial canopy cover and without tall trees were most vulnerable to canopy cover declines, likely explaining the disproportionate declines of mature forest habitat and within PACs. Drought and beetle attack caused greater cumulative declines than areas where drought and wildfire mortality overlapped, and both types of natural disturbance far outpaced declines attributable to mechanical activities. Drought mortality that disproportionately affects large conifers is particularly problematic to mature forest specialist species reliant on large trees. However, patches of degraded forests within wildfire perimeters were larger with greater core area than those outside burned areas, and remnant forest habitats were more fragmented within burned perimeters than those affected by drought and beetle mortality alone. The percentage of mature forest that survived and potentially benefited from lower severity wildfire increased over time as the total extent of mature forest declined. These areas provide some opportunity for improved resilience to future disturbances, but strategic management interventions are likely also necessary to mitigate worsening mega-disturbances. Remaining dry mature forest habitat in California may be susceptible to complete loss in the coming decades without a rapid transition from a conservation paradigm that attempts to maintain static conditions to one that manages for sustainable disturbance dynamics.


Subject(s)
Fires , Tracheophyta , Wildfires , Ecosystem , Forests , Trees
2.
Ecol Appl ; 32(2): e2514, 2022 03.
Article in English | MEDLINE | ID: mdl-35094444

ABSTRACT

Severe droughts are predicted to become more frequent in the future, and the consequences of such droughts on forests can be dramatic, resulting in massive tree mortality, rapid change in forest structure and composition, and substantially increased risk of catastrophic fire. Forest managers have tools at their disposal to try to mitigate these effects but are often faced with limited resources, forcing them to make choices about which parts of the landscape to target for treatment. Such planning can greatly benefit from landscape vulnerability assessments, but many existing vulnerability analyses are unvalidated and not grounded in robust empirical datasets. We combined robust sets of ground-based plot and remote sensing data, collected during the 2012-2016 California drought, to develop rigorously validated tools for assessing forest vulnerability to drought-related canopy tree mortality for the mixed conifer forests of the Sequoia and Kings Canyon national parks and potentially for mixed conifer forests in the Sierra Nevada as a whole. Validation was carried out using a large external dataset. The best models included normalized difference vegetation index (NDVI), elevation, and species identity. Models indicated that tree survival probability decreased with greenness (as measured by NDVI) and elevation, particularly if trees were growing slowly. Overall, models showed good calibration and validation, especially for Abies concolor, which comprise a large majority of the trees in many mixed conifer forests in the Sierra Nevada. Our models tended to overestimate mortality risk for Calocedrus decurrens and underestimate risk for pine species, in the latter case probably due to pine bark beetle outbreak dynamics. Validation results indicated dangers of overfitting, as well as showing that the inclusion of trees already under attack by bark beetles at the time of sampling can give false confidence in model strength, while also biasing predictions. These vulnerability tools should be useful to forest managers trying to assess which parts of their landscape were vulnerable during the 2012-2016 drought, and, with additional validation, may prove useful for ongoing assessments and predictions of future forest vulnerability.


Subject(s)
Fires , Pinus , Tracheophyta , Animals , Droughts , Forests
3.
Ecol Appl ; 31(7): e02395, 2021 10.
Article in English | MEDLINE | ID: mdl-34164888

ABSTRACT

Between 2012 and 2016, California suffered one of the most severe droughts on record. During this period Sequoiadendron giganteum (giant sequoias) in the Sequoia and Kings Canyon National Parks (SEKI), California, USA experienced canopy water content (CWC) loss, unprecedented foliage senescence, and, in a few cases, death. We present an assessment of the vulnerability of giant sequoia populations to droughts that is currently lacking and needed for management. We used a temporal trend of remotely sensed CWC obtained between 2015 and 2017, and recently georeferenced giant sequoia crowns to quantify the vulnerability of 7,408 individuals in 10 groves in the northern portion of SEKI. CWC is sensitive to changes in liquid water in tree canopies; therefore, it is a useful metric for quantifying the response of sequoia trees to drought. Temporal trends indicated that 9% of giant sequoias had a significant decline or consistently low CWC, suggesting these trees were likely operating at low photosynthetic capacity and potentially at high risk to drought stress. We also found that 20% of the giant sequoias had an increase or consistently high level of CWC, indicating these trees were at low risk to drought stress. These vulnerability categories were used in a random forest model with a combination of topographic, fire-related, and climate variables to generate high-resolution vulnerability risk maps. These maps show that higher risk is associated with lower elevation and higher climate water deficit. We also found that sequoias at higher elevations but located near meadows had higher vulnerability risk. These results and the vulnerability maps can identify vulnerable sequoias that may be difficult to save or locations of refugia to be protected, and thus may aid forest managers in preparation for future droughts.


Subject(s)
Droughts , Sequoiadendron , California , Climate , Fires , Remote Sensing Technology
4.
Appl Environ Microbiol ; 76(5): 1349-58, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20048064

ABSTRACT

Microbial ecologists and systematists are challenged to discover the early ecological changes that drive the splitting of one bacterial population into two ecologically distinct populations. We have aimed to identify newly divergent lineages ("ecotypes") bearing the dynamic properties attributed to species, with the rationale that discovering their ecological differences would reveal the ecological dimensions of speciation. To this end, we have sampled bacteria from the Bacillus subtilis-Bacillus licheniformis clade from sites differing in solar exposure and soil texture within a Death Valley canyon. Within this clade, we hypothesized ecotype demarcations based on DNA sequence diversity, through analysis of the clade's evolutionary history by Ecotype Simulation (ES) and AdaptML. Ecotypes so demarcated were found to be significantly different in their associations with solar exposure and soil texture, suggesting that these and covarying environmental parameters are among the dimensions of ecological divergence for newly divergent Bacillus ecotypes. Fatty acid composition appeared to contribute to ecotype differences in temperature adaptation, since those ecotypes with more warm-adapting fatty acids were isolated more frequently from sites with greater solar exposure. The recognized species and subspecies of the B. subtilis-B. licheniformis clade were found to be nearly identical to the ecotypes demarcated by ES, with a few exceptions where a recognized taxon is split at most into three putative ecotypes. Nevertheless, the taxa recognized do not appear to encompass the full ecological diversity of the B. subtilis-B. licheniformis clade: ES and AdaptML identified several newly discovered clades as ecotypes that are distinct from any recognized taxon.


Subject(s)
Bacillus/classification , Bacillus/genetics , Biodiversity , Ecosystem , Environmental Microbiology , Bacillus/chemistry , Bacillus/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids/analysis , Genetic Speciation , Genotype , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...