Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 118(1): 83-91, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16119332

ABSTRACT

Strong self-sustained acoustic oscillations may occur in a gas pipe network under certain gas flow velocities within the network. The pipe network under consideration consists of a main pipe, with a variable mean airflow, with two closed coaxial side branches of variable but equal length joined to the main pipe. Coupling between resonant acoustic standing waves and instabilities of the shear layers separating the flow in the main pipe from the stagnant gas in the closed side branches leads to strong acoustic oscillations at a frequency corresponding to the half-wavelength acoustic mode defined by the total side-branch length. An acoustic damper consisting of a variable acoustic resistance and compliance is used to dissipate power from the resonating mode. The response of the aeroacoustically driven resonator to variable damping will be examined for different fluid flow regimes as well as side-branch geometries.

2.
J Acoust Soc Am ; 117(6): 3628-35, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16018466

ABSTRACT

The mean flow of gas in a pipe past a cavity can excite the resonant acoustic modes of the cavity--much like blowing across the top of a bottle. The periodic shedding of vortices from the leading edge of the mouth of the cavity feeds energy into the acoustic modes which, in turn, affect the shedding of the next vortex. This so-called aeroacoustic whistle can excite very high amplitude acoustic standing waves within a cavity defined by coaxial side branches closed at their ends. The amplitude of these standing waves can easily be 20% of the ambient pressure at optimal gas flow rates and ambient pressures within the main pipe. A standing wave thermoacoustic heat pump is a device which utilizes the in-phase pressure and displacement oscillations to pump heat across a porous medium thereby establishing, or maintaining, a temperature gradient. Experimental results of a combined system of aeroacoustic sound source and a simple thermoacoustic stack will be presented.

3.
J Acoust Soc Am ; 105(5): 2677-84, 1999 May.
Article in English | MEDLINE | ID: mdl-10335618

ABSTRACT

The best working gases for thermoacoustic refrigeration have high ratios of specific heats and low Prandtl numbers. These properties can be optimized by the use of a mixture of light and heavy noble gases. In this paper it is shown that light noble gas-heavy polyatomic gas mixtures can result in useful working gases. In addition, it is demonstrated that the onset temperature of a heat driven prime mover can be minimized with a gas with large Prandtl number and small ratio of specific heats. The gas properties must be optimized for the particular application of thermoacoustics; it cannot be assumed that high specific heat ratio and low Prandtl number are always desirable.


Subject(s)
Acoustics , Gases , Thermal Conductivity , Engineering , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...