Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Crit Rev Microbiol ; 50(1): 105-126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36634159

ABSTRACT

Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases.


Subject(s)
Gammaproteobacteria , Gammaproteobacteria/genetics , DNA Transposable Elements , Conjugation, Genetic , Anti-Bacterial Agents
2.
Sci Rep ; 10(1): 8716, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457296

ABSTRACT

Integrative Conjugative Elements (ICE's) of the SXT/R391 family have largely been detected in clinical or environmental isolates of Gammaproteobacteria, particularly Vibrio and Proteus species. As wastewater treatment plants accumulate a large and diverse number of such species, we examined raw water samples taken from a municipal wastewater treatment plant initially using SXT/R391 family integrase gene-specific PCR probes to detect the presence of such elements in a directed approach. A positive amplification occurred over a full year period and a subsequent Restriction Fragment Length Polymorphism (RFLP) analysis revealed a very limited diversity in the treatment plant examined. Samples demonstrating positive amplification were cultured using Vibrio and Proteus selective media and PCR amplification tracking was utilized to monitor SXT/R391-ICE family containing strains. This screening procedure resulted in the isolation and identification of a Proteus mirabilis strain harbouring an ICE. Whole-genome sequencing of this ICE containing strain using Illumina sequencing technology revealed a novel 81 kb element that contained 75 open reading frames on annotation but contained no antibiotic or metal resistance determinants. Comparative genomics revealed the element contained a conserved ICE core with one of the insertions containing a novel bacteriophage defence mechanism. This directed isolation suggests that ICE elements are present in the environment without apparent selective pressure but may contain adaptive functions allowing survival in particular environments such as municipal wastewater which are reservoirs for large bacterial phage populations.


Subject(s)
DNA Transposable Elements , Proteus mirabilis/isolation & purification , Wastewater/microbiology , Whole Genome Sequencing/methods , Cities , Genomics , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phylogeny , Polymorphism, Restriction Fragment Length , Proteus mirabilis/classification , Proteus mirabilis/genetics
3.
Genes (Basel) ; 10(12)2019 12 16.
Article in English | MEDLINE | ID: mdl-31888308

ABSTRACT

ICEpMERPH, the first integrative conjugative element (ICE) of the SXT/R391 family isolated in the United Kingdom and Europe, was analyzed to determine the nature of its adaptive functions, its genetic structure, and its homology to related elements normally found in pathogenic Vibrio or Proteus species. Whole genome sequencing of Escherichia coli (E. coli) isolate K802 (which contains the ICEpMERPH) was carried out using Illumina sequencing technology. ICEpMERPH has a size of 110 Kb and 112 putative open reading frames (ORFs). The "hotspot regions" of the element were found to contain putative restriction digestion systems, insertion sequences, and heavy metal resistance genes that encoded resistance to mercury, as previously reported, but also surprisingly to arsenate. A novel arsenate resistance system was identified in hotspot 4 of the element, unrelated to other SXT/R391 elements. This arsenate resistance system was potentially linked to two genes: orf69, encoding an organoarsenical efflux major facilitator superfamily (MFS) transporter-like protein related to ArsJ, and orf70, encoding nicotinamide adenine dinucleotide (NAD)-dependent glyceraldehyde-3-phosphate dehydrogenase. Phenotypic analysis using isogenic strains of Escherichia coli strain AB1157 with and without the ICEpMERPH revealed resistance to low levels of arsenate in the range of 1-5 mM. This novel, low-level resistance may have an important adaptive function in polluted environments, which often contain low levels of arsenate contamination. A bioinformatic analysis on the novel determinant and the phylogeny of ICEpMERPH was presented.


Subject(s)
Arsenates/toxicity , Drug Resistance, Bacterial/drug effects , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/isolation & purification , Escherichia coli Proteins/classification , Genotype , Glyceraldehyde-3-Phosphate Dehydrogenase (NADP+)(Phosphorylating)/genetics , Open Reading Frames/genetics , Phenotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...