Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(21): 211101, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860089

ABSTRACT

We study the effect of a first-order phase transition in a confining SU(N) dark sector with heavy dark quarks. The baryons of this sector are the dark matter candidates. During the confinement phase transition the heavy quarks are trapped inside isolated, contracting pockets of the deconfined phase, giving rise to a second stage of annihilation that dramatically suppresses the dark quark abundance. The surviving abundance is determined by the local accidental asymmetry in each pocket. The correct dark matter abundance is obtained for O(1-100) PeV dark quarks, above the usual unitarity bound.

2.
Phys Rev Lett ; 125(12): 121105, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016744

ABSTRACT

We reexamine evidence that the Galactic Center Excess (GCE) originates primarily from point sources (PSs). We show that in our region of interest, non-Poissonian template fitting evidence for GCE PSs is an artifact of unmodeled north-south asymmetry of the GCE. This asymmetry is strongly favored by the fit (although it is unclear if this is physical), and when it is allowed, the preference for PSs becomes insignificant. We reproduce this behavior in simulations, including detailed properties of the spurious PS population. We conclude that the non-Poissonian template fitting evidence for GCE PSs is highly susceptible to certain systematic errors and should not at present be taken to robustly disfavor a dominantly smooth GCE.

3.
Phys Rev Lett ; 123(24): 241101, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922851

ABSTRACT

Statistical evidence has previously suggested that the galactic center GeV excess (GCE) originates largely from point sources, and not from annihilating dark matter. We examine the impact of unmodeled source populations on identifying the true origin of the GCE using non-Poissonian template fitting (NPTF) methods. In a proof-of-principle example with simulated data, we discover that unmodeled sources in the Fermi bubbles can lead to a dark matter signal being misattributed to point sources by the NPTF. We discover striking behavior consistent with a mismodeling effect in the real Fermi data, finding that large artificial injected dark matter signals are completely misattributed to point sources. Consequently, we conclude that dark matter may provide a dominant contribution to the GCE after all.

4.
Phys Rev Lett ; 116(5): 051103, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26894697

ABSTRACT

We present a new method to characterize unresolved point sources (PSs) generalizing traditional template fits to account for non-Poissonian photon statistics. We apply this method to Fermi Large Area Telescope γ-ray data to characterize PS populations at high latitudes and in the Inner Galaxy. We find that PSs (resolved and unresolved) account for ∼50% of the total extragalactic γ-ray background in the energy range ∼1.9 to 11.9 GeV. Within 10° of the Galactic Center with |b|≥2°, we find that ∼5%-10% of the flux can be accounted for by a population of unresolved PSs distributed consistently with the observed ∼GeV γ-ray excess in this region. The excess is fully absorbed by such a population, in preference to dark-matter annihilation. The inferred source population is dominated by near-threshold sources, which may be detectable in future searches.

5.
Phys Rev Lett ; 114(21): 211302, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26066425

ABSTRACT

We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...