Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920661

ABSTRACT

Inflammasomes comprise a group of protein complexes with fundamental roles in the induction of inflammation. Upon sensing stress factors, their assembly induces the activation and release of the pro-inflammatory cytokines interleukin (IL)-1ß and -18 and a lytic type of cell death, termed pyroptosis. Recently, CARD8 has joined the group of inflammasome sensors. The carboxy-terminal part of CARD8, consisting of a function-to-find-domain (FIIND) and a caspase activation and recruitment domain (CARD), resembles that of NLR family pyrin domain containing 1 (NLRP1), which is recognized as the main inflammasome sensor in human keratinocytes. The interaction with dipeptidyl peptidases 8 and 9 (DPP8/9) represents an activation checkpoint for both sensors. CARD8 and NLRP1 are activated by viral protease activity targeting their amino-terminal region. However, CARD8 also has some unique features compared to the established inflammasome sensors. Activation of CARD8 occurs independently of the inflammasome adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), leading mainly to pyroptosis rather than the activation and secretion of pro-inflammatory cytokines. CARD8 was also shown to have anti-inflammatory and anti-apoptotic activity. It interacts with, and inhibits, several proteins involved in inflammation and cell death, such as the inflammasome sensor NLRP3, CARD-containing proteins caspase-1 and -9, nucleotide-binding oligomerization domain containing 2 (NOD2), or nuclear factor kappa B (NF-κB). Single nucleotide polymorphisms (SNPs) of CARD8, some of them occurring at high frequencies, are associated with various inflammatory diseases. The molecular mechanisms underlying the different pro- and anti-inflammatory activities of CARD8 are incompletely understood. Alternative splicing leads to the generation of multiple CARD8 protein isoforms. Although the functional properties of these isoforms are poorly characterized, there is evidence that suggests isoform-specific roles. The characterization of the functions of these isoforms, together with their cell- and disease-specific expression, might be the key to a better understanding of CARD8's different roles in inflammation and inflammatory diseases.


Subject(s)
Apoptosis , CARD Signaling Adaptor Proteins , Inflammasomes , Humans , Inflammasomes/metabolism , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Animals , Pyroptosis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Neoplasm Proteins
2.
Methods Mol Biol ; 2849: 73-86, 2024.
Article in English | MEDLINE | ID: mdl-38407798

ABSTRACT

Due to their full differentiation capacity in vitro, the culture of human primary keratinocytes (HPKs) represents a physiological model for answering basic biological and dermatological research questions, including those related to skin diseases and the investigation of treatment options. When modified with the CRISPR/Cas9 gene editing approach and cultivated in organotypic 3D epidermal equivalents (EEs), these human cells have the potential to replace established mouse models. However, even when cultivated on feeder cells, HPKs have only a low proliferation capacity in 2D culture, limiting their application potential. This is particularly true for CRISPR/Cas9-modified HPKs, whose generation commonly requires selection of targeted cells, negatively affecting their lifespan. Here, we describe a robust protocol for the rapid, simple, and efficient generation of single- and multi-gene CRISPR/Cas9 knockout HPKs by electroporation of ribonucleoprotein (RNP) complexes, which comprise one or multiple guide RNAs (gRNAs) and Cas9 protein. Unlike DNA transfection or virus-based targeting strategies, electroporation of RNPs represents a targeting approach that minimizes immunological and toxic side effects. Using efficient gRNAs results in the generation of HPKs with a high yield of knockout cells, allowing for their immediate use in experiments without requiring the laborious process of selecting targeted cells or maintaining a feeder cell culture. Furthermore, the use of RNPs and their delivery via electroporation minimizes off-target and other unspecific effects, preventing unintended genomic alterations. Most importantly, CRISPR/Cas9 knockout HPKs generated with this protocol have the ability to form a fully differentiated epidermis in 3D, thus facilitating the understanding of specific protein functions in a highly physiological human skin model. Alternatively, this approach proves valuable for generating models of mono- or polygenic skin diseases via knockouts, providing insights into the underlying molecular mechanisms and facilitating the development of novel therapeutic approaches.


Subject(s)
CRISPR-Cas Systems , Electroporation , Gene Editing , Gene Knockout Techniques , Keratinocytes , RNA, Guide, CRISPR-Cas Systems , Humans , Keratinocytes/metabolism , Keratinocytes/cytology , Electroporation/methods , Gene Knockout Techniques/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Editing/methods , Cells, Cultured , Cell Differentiation/genetics , Cell Culture Techniques/methods
3.
Front Immunol ; 14: 1254150, 2023.
Article in English | MEDLINE | ID: mdl-37771587

ABSTRACT

Gasdermins comprise a family of pore-forming proteins, which play critical roles in (auto)inflammatory diseases and cancer. They are expressed as self-inhibited precursor proteins consisting of an aminoterminal cytotoxic effector domain (NT-GSDM) and a carboxyterminal inhibitor domain (GSDM-CT) separated by an unstructured linker region. Proteolytic processing in the linker region liberates NT-GSDM, which translocates to membranes, forms oligomers, and induces membrane permeabilization, which can disturb the cellular equilibrium that can lead to cell death. Gasdermin activation and pore formation are associated with inflammation, particularly when induced by the inflammatory protease caspase-1 upon inflammasome activation. These gasdermin pores allow the release of the pro-inflammatory cytokines interleukin(IL)-1ß and IL-18 and induce a lytic type of cell death, termed pyroptosis that supports inflammation, immunity, and tissue repair. However, even at the cellular level, the consequences of gasdermin activation are diverse and range from induction of programmed cell death - pyroptosis or apoptosis - to poorly characterized protective mechanisms. The specific effects of gasdermin activation can vary between species, cell types, the membrane that is being permeabilized (plasma membrane, mitochondrial membrane, etc.), and the overall biological state of the local tissue/cells. In epithelia, gasdermins seem to play crucial roles. Keratinocytes represent the main cell type of the epidermis, which is the outermost skin layer with an essential barrier function. Compared to other tissues, keratinocytes express all members of the gasdermin family, in part in a differentiation-specific manner. That raises questions regarding the specific roles of individual GSDM family members in the skin, the mechanisms and consequences of their activation, and the potential crosstalk between them. In this review, we summarize the current knowledge about gasdermins with a focus on keratinocytes and the skin and discuss the possible roles of the different family members in immunity and disease.

4.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293159

ABSTRACT

Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1ß and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.


Subject(s)
Inflammasomes , Skin Neoplasms , Humans , Inflammasomes/metabolism , Apoptosis Regulatory Proteins/metabolism , NLR Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Caspase 1/metabolism , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Cytokines/metabolism , Inflammation
5.
J Invest Dermatol ; 142(9): 2313-2322, 2022 09.
Article in English | MEDLINE | ID: mdl-35550825

ABSTRACT

In 2007, it was shown that DNA sequence variants of the human NLRP1 gene are associated with autoimmune and autoinflammatory diseases affecting mainly the skin. However, at that time, the underlying cellular and molecular mechanisms were poorly characterized. Meanwhile, increasing evidence suggests that the NLRP1 inflammasome expressed by keratinocytes not only plays a part in the pathology of common inflammatory skin diseases and cancer development but also contributes to skin immunity. Understanding the mechanisms regulating NLRP1 activation in keratinocytes and the downstream events in human skin might pave the way for developing novel strategies for treating patients suffering from NLRP1-mediated skin diseases.


Subject(s)
Dermatitis , Skin Diseases , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Humans , Inflammasomes/metabolism , Keratinocytes/metabolism , NLR Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...