Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Res Princ Implic ; 4(1): 48, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31858294

ABSTRACT

BACKGROUND: Most science categories are hierarchically organized, with various high-level divisions comprising numerous subtypes. If we suppose that one's goal is to teach students to classify at the high level, past research has provided mixed evidence about whether an effective strategy is to require simultaneous classification learning of the subtypes. This past research was limited, however, either because authentic science categories were not tested, or because the procedures did not allow participants to form strong associations between subtype-level and high-level category names. Here we investigate a two-stage response-training procedure in which participants provide both a high-level and subtype-level response on most trials, with feedback provided at both levels. The procedure is tested in experiments in which participants learn to classify large sets of rocks that are representative of those taught in geoscience classes. RESULTS: The two-stage procedure yielded high-level classification performance that was as good as the performance of comparison groups who were trained solely at the high level. In addition, the two-stage group achieved far greater knowledge of the hierarchical structure of the categories than did the comparison controls. CONCLUSION: In settings in which students are tasked with learning high-level names for rock types that are commonly taught in geoscience classes, it is best for students to learn simultaneously at the high and subtype levels (using training techniques similar to the presently investigated one). Beyond providing insights into the nature of category learning and representation, these findings have practical significance for improving science education.

SELECTION OF CITATIONS
SEARCH DETAIL
...