Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 198(9-11): 693-697, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36006000

ABSTRACT

Disasters involving radioactive materials are one of the most dangerous accidents a living organism can be exposed to. Individuals and first responders are in risk during accidents or interventions, due to radioactive debris impact, due to the use of depleted uranium ammunition or a malevolent act against individuals. Moreover, radioactive contamination of wounds causes internal exposure in the body and standard decontamination procedures cannot be applied. In order to deal with such situations, we are developing a measurement system consisting of a robotic arm, an array of various detectors and a corresponding methodology, which allows quantifying timely the spatial distribution of contamination and the radiation dose for the adequate medical response. The aim of this publication is to the present current status of the development of the described apparatus.


Subject(s)
Radiometry , Uranium , Humans
2.
ACS Omega ; 7(51): 48555-48563, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591114

ABSTRACT

Minimizing the fiber property distribution would have the potential to improve the pulp properties and the process efficiency of chemimechanical pulp. To achieve this, it is essential to improve the level of knowledge of how evenly distributed the sulfonate concentration is between the individual chemimechanical pulp fibers. Due to the variation in quality between pulpwood and sawmill chips, as well as the on-chip screening method, it is difficult to develop an impregnation system that ensures the even distribution of sodium sulfite (Na2SO3) impregnation liquid. It is, therefore, crucial to measure the distribution of sulfonate groups within wood chips and fibers on a microscale. Typically, the degree of unevenness, i.e., the amount of fiber sulfonation and softening prior to defibration, is unknown on a microlevel due to excessively robust or complex processing methods. The degree of sulfonation at the fiber level can be determined by measuring the distribution of elemental sulfur and counterions of sulfonate groups, such as sodium or calcium. A miniaturized energy-dispersive X-ray fluorescence (ED-XRF) method has been developed to address this issue, enabling the analysis of sulfur distributions. It is effective enough to be applied to industrial laboratories for further development, i.e., improved image resolution and measurement time.

3.
J Neurosci Methods ; 318: 34-46, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30802472

ABSTRACT

BACKGROUND: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. NEW METHOD: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with its 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. RESULTS: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. COMPARISON WITH EXISTING METHOD(S): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. CONCLUSIONS: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.


Subject(s)
Cerebrum/physiology , Electroencephalography/methods , Functional Neuroimaging/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Neurovascular Coupling/physiology , Adult , Cerebrum/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Psycholinguistics , Visual Perception/physiology , Young Adult
4.
Hum Brain Mapp ; 40(4): 1114-1138, 2019 03.
Article in English | MEDLINE | ID: mdl-30403309

ABSTRACT

This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.


Subject(s)
Artifacts , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Cerebrospinal Fluid , Humans , White Matter
5.
J Neural Eng ; 15(3): 036025, 2018 06.
Article in English | MEDLINE | ID: mdl-29536946

ABSTRACT

OBJECTIVE: Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. APPROACH: The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. MAIN RESULTS: We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. SIGNIFICANCE: Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Electroencephalography/methods , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Adult , Female , Humans , Male , Time Factors , Young Adult
6.
Brain Topogr ; 31(1): 76-89, 2018 01.
Article in English | MEDLINE | ID: mdl-28875402

ABSTRACT

Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.


Subject(s)
Electroencephalography/statistics & numerical data , Image Interpretation, Computer-Assisted/methods , Algorithms , Brain Mapping/methods , Cluster Analysis , Decision Making/physiology , Electroencephalography/methods , Humans , Magnetic Resonance Imaging , Male , Principal Component Analysis , Psychomotor Performance/physiology , Reproducibility of Results , Signal Processing, Computer-Assisted , Visual Perception/physiology , Young Adult
7.
Neural Comput ; 29(4): 968-989, 2017 04.
Article in English | MEDLINE | ID: mdl-28095199

ABSTRACT

Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.


Subject(s)
Brain Waves/physiology , Brain/physiology , Electroencephalography , Image Processing, Computer-Assisted , Neural Pathways/physiology , Acoustic Stimulation , Adult , Animals , Brain/diagnostic imaging , Brain Mapping , Factor Analysis, Statistical , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Oxygen/blood , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...