Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610670

ABSTRACT

Acmella oleracea is a promising cosmetic, nutraceutical, and pharmaceutical ingredient, and plants with high levels of active compounds are needed in the market. Cultivation can be valuable if sufficient levels of alkylamides are present in plant material. In this regard the application of biostimulants can be an innovative approach to increase yield of cultivation or bioactive compound levels. A. oleracea plants were cultivated in Northern Italy in an experimental site using three different types of biostimulants, triacontanol-based mixture (Tria), an extract from plant tissues (LL017), and seaweed extract (Swe). Plants were grown in the field in two different growing seasons (2018 and 2019). After treatments inflorescences were harvested and the quali-quantitative analysis of alkylamides and polyphenols was performed. Treated and control plants were compared for yields, morphometric measurements, quali-quantitative composition in secondary metabolites. Overall results show that both triacontanol-based mixture and the LL017 positively influenced plant growth (Tria >+ 22%; LL017 >+ 25%) and flower production (Tria >+ 34%; LL017 >+ 56%). The amount of alkylamides and polyphenols in flowers were between 2.0-5.2% and 0.03-0.50%, respectively. Biostimulant treatments ensure higher cultivation yields and allow maintenance of the alkylamide and polyphenol levels based on % (w/w), thus offering an advantage in the final quantity of extractable chemicals. Furthermore, data revealed that samples harvested in late season show a decrease of polyphenols.

2.
AoB Plants ; 82016.
Article in English | MEDLINE | ID: mdl-27255516

ABSTRACT

The monitoring of biodiversity has mainly focused on the species level. However, researchers and land managers are making increasing use of complementary assessment tools that address higher levels of biological organization, i.e. communities, habitats and ecosystems. Recently, a variety of frameworks have been proposed for assessing the conservation status of communities or ecosystems. Among the various criteria proposed, all the protocols suggest considering (i) spatial aspects (range and area), and (ii) qualitative aspects of specific structures and functions. However, changes to ecological function are difficult to quantify and many protocols end up by using qualitative criteria. The aim of this work was to test the efficacy of some plant community attributes for the detection of vegetation quality in sand dune plant communities. We chose plant community attributes that either help to distinguish a habitat from others (diagnostic components) or play a significant role in habitat function and persistence over time. We used a diachronic approach by contrasting up-to-date vegetation data with data from previous studies carried out within the same areas. Changes in species composition were detected through detrended correspondence analyses (detrended correspondence analyses), Multi-Response Permutation Procedures and Indicator Species Analysis, while structural changes were analyzed by comparing species richness, total species cover, ecological groups of species and growth forms through null models. Ecological groups such as native focal species and aliens, and growth forms proved their efficacy in discriminating between habitat types and in describing their changes over time. The approach used in this study may provide an instrument for the assessment of plant community quality that can be applied to other coastal ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...