Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913299

ABSTRACT

Actual use studies play a key part in evaluating the reduced risk potential of tobacco and nicotine products. This study was undertaken to determine the puffing topography, mouth level exposure (MLE) and average daily consumption (ADC) relating to two commercially available tobacco heating products (THPs) and a prototype electronic cigarette (or e-cigarette) among Italian non-mentholated 7 mg ISO tar cigarette smokers. The study was conducted in Milan, Italy, with three groups of approximately 50 participants. Groups 1 and 3 included adult smokers of 7 mg ISO tar tobacco cigarettes, and Group 2 consisted of both solus vapers and dual users of vapour and tobacco products. Amongst smokers, e-cigarette mean puff volumes (41.6 mL vs 41.3 mL) and mean puff durations (1.4 s vs 1.5 s) were similar to that of the cigarette, although the average usage session was significantly longer (1064.8 s vs 289.5 s) with a higher total number of puffs (58.6 vs 17.3), however this may be attributable to differences in product operation. There were no significant differences across puffing topography measurements observed between smokers (Group 1) and regular vapers/dual users (Group 2) when using the e-cigarette. As consistent with previous research, users took, on average, larger mean puff volumes when using a THP compared to the reference cigarette (C651), although puff numbers and puff durations remained similar. The average interval between puffs was considerably shorter for THP1.0(T) compared to THS2.4(T) (11.0 s vs 17.1 s). MLE to nicotine-free dry particulate matter and nicotine was significantly reduced for THP1.0(T) and THS2.4(T) compared to the tobacco cigarette (C651). MLE to nicotine was also significantly reduced for the e-cigarette (IS1.0(T)) compared to C651. The average daily consumption (ADC) of cigarettes by groups 1 and 3 were higher than the respective ADCs of both THP consumables. There were no significant differences in ADC when comparing the same product between different groups. Differences seen between sensory scores for each of the product categories may be attributed to fundamental differences in design and mode of operation resulting in very different characteristics of the aerosol generated.


Subject(s)
Electronic Nicotine Delivery Systems/statistics & numerical data , Inhalation Exposure/analysis , Mouth Mucosa/drug effects , Nicotine/administration & dosage , Smoking/epidemiology , Tobacco Products/adverse effects , Tobacco Use Disorder/epidemiology , Adult , Aged , Female , Humans , Italy/epidemiology , Male , Middle Aged , Nicotine/analysis
2.
Regul Toxicol Pharmacol ; 93: 84-91, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28822877

ABSTRACT

A four-arm study was undertaken in Japan to determine the puffing topography, mouth level exposure and average daily consumption by consumers of the tobacco heating products (THPs): the non-mentholated THP1.0(T), the mentholated THP1.0(M) and a tobacco heating system (THS). The extent of lip blocking of air inlet holes while using THP1.0(T) was also assessed. Groups 1, 2, and 4 included smokers, and group 3 included regular THP users. Smokers of 7-8 mg ISO nicotine free dry particulate matter (NFDPM) non-mentholated cigarettes took on average larger mean puff volumes from THPs than from conventional cigarettes, but puff numbers and durations were similar. Mouth level exposure to NFDPM and nicotine levels were significantly lower when using THPs than conventional cigarettes. Similar trends were observed among smokers of 7-8 mg ISO NFDPM mentholated cigarettes who used mentholated cigarettes and THP1.0(M). Regular users of commercial THS had similar puffing behaviours irrespective of whether they were using THS or THP1.0(T), except for mean puff volume which was lower with THP1.0(T). No smokers blocked the air inlet holes when using THP1.0(T). The puffing topography results support the machine puffing regime used to generate toxicant emissions data and in vitro toxicology testing.


Subject(s)
Electronic Nicotine Delivery Systems/methods , Heating/methods , Inhalation Exposure/analysis , Mouth Mucosa/drug effects , Nicotine/analysis , Tobacco Products/analysis , Adult , Electronic Nicotine Delivery Systems/instrumentation , Female , Heating/instrumentation , Humans , Japan/epidemiology , Male , Middle Aged , Mouth Mucosa/metabolism , Nicotine/administration & dosage , Particulate Matter/administration & dosage , Particulate Matter/analysis , Young Adult
3.
Sci Rep ; 6: 35071, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27721496

ABSTRACT

With the rapidly rising popularity and substantial evolution of electronic cigarettes (e-cigarettes) in the past 5-6 years, how these devices are used by vapers and consumers' exposure to aerosol emissions need to be understood. We used puffing topography to measure directly product use. We adapted a cigarette puffing topography device for use with e-cigarettes. We performed validation using air and e-cigarette aerosol under multiple regimes. Consumer puffing topography was measured for 60 vapers provided with rechargeable "cig-a-like" or larger button-activated e-cigarettes, to use ad-libitum in two sessions. Under all regimes, air puff volumes were within 1 mL of the target and aerosol volumes within 5 mL for all device types, serving to validate the device. Vapers' mean puff durations (2.0 s and 2.2 s) were similar with both types of e-cigarette, but mean puff volumes (52.2 mL and 83.0 mL) and mean inter-puff intervals (23.2 s and 29.3 s) differed significantly. The differing data show that product characteristics influence puffing topography and, therefore, the results obtained from a given e-cigarette might not read across to other products. Understanding the factors that affect puffing topography will be important for standardising testing protocols for e-cigarette emissions.


Subject(s)
Aerosols/pharmacology , Electronic Nicotine Delivery Systems , Smoking , Tobacco Products , Aerosols/chemistry , Humans , Inhalation Exposure , Nicotine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...