Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35407781

ABSTRACT

We report on X-ray photoelectron spectroscopy and ab initio electronic structure investigations of the skutterudite-related R5Rh6Sn18 superconductors, where R = Sc, Y, and Lu. These compounds crystallise with a tetragonal structure (space group I41/acd) and are characterised by a deficiency of R atoms in their formula unit (R5-δRh6Sn18, δ≪1). Recently, we documented that the vacancies δ and atomic local defects (often induced by doping) are a reason for the enhancement in the superconducting transition temperature Tc of these materials, as well as metallic (δ=0) or semimetallic (δ≠0) behaviours in their normal state. Our band structure calculations show the pseudogap at a binding energy of -0.3 eV for the stoichiometric compounds, which can be easily moved towards the Fermi level by vacancies δ. As a result, dychotomic nature in electric transport of R5Rh6Sn18 (metallic or semimetallic resistivity) depends on δ, which has not been interpreted before. We have shown that the densities of states are very similar for various R5Rh6Sn18 compounds, and they practically do not depend on the metal R, while they are determined by the Rh d-and Sn s- and p-electron states. The band structure calculations for Sc5Rh6Sn18 have not been reported yet. We also found that the electronic specific heat coefficients γ0 for the stoichiometric samples were always larger with respect to the γ0 of the respective samples with vacancies at the R sites, which correlates with the results of ab initio calculations.

2.
Materials (Basel) ; 14(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067491

ABSTRACT

The new series of single-crystalline chromium selenides, Ta-doped ZnCr2Se4, was synthesised by a chemical vapour transport method to determine the impact of a dopant on the structural and thermodynamic properties of the parent compound. We present comprehensive investigations of structural, electrical transport, magnetic, and specific heat properties. It was expected that a partial replacement of Cr ions by a more significant Ta one would lead to a change in direct magnetic interactions between Cr magnetic moments and result in a change in the magnetic ground state and electric transport properties of the ZnCr2-xTaxSe4 (x = 0.05, 0.06, 0.07, 0.08, 0.1, 0.12) system. We found that all the elements of the cubic system had a cubic spinel structure; however, the doping gain linearly increased the ZnCr2-xTaxSe4 unit cell volume. Doping with tantalum did not significantly change the semiconductor and magnetic properties of ZnCr2Se4. For all studied samples (0 ≤ x ≤ 0.12), an antiferromagnetic order (AFM) below TN~22 K was observed. However, a small amount of Ta significantly reduced the second critical field (Hc2) from 65 kOe for x = 0.0 (ZnCr2Se4 matrix) up to 42.2 kOe for x = 0.12, above which the spin helical system changed to ferromagnetic (FM). The Hc2 reduction can lead to strong competition among AFM and FM interactions and spin frustration, as the specific heat under magnetic fields H < Hc2 shows a strong field decrease in TN.

3.
Materials (Basel) ; 13(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371360

ABSTRACT

We investigated the effect of enhancement of superconducting transition temperature Tc by nonmagnetic atom disorder in the series of filled skutterudite-related compounds (La3M4Sn13, Ca3Rh4Sn13, Y5Rh6Sn18, Lu5Rh6Sn18; M= Co, Ru, Rh), where the atomic disorder is generated by various defects or doping. We have shown that the disorder on the coherence length scale ξ in these nonmagnetic quasiskutterudite superconductors additionally generates a non-homogeneous, high-temperature superconducting phase with Tc⋆>Tc (dilute disorder scenario), while the strong fluctuations of stoichiometry due to increasing doping can rapidly increase the superconducting transition temperature of the sample even to the value of Tc⋆∼2Tc (dense disorder leading to strong inhomogeneity). This phenomenon seems to be characteristic of high-temperature superconductors and superconducting heavy fermions, and recently have received renewed attention. We experimentally documented the stronger lattice stiffening of the inhomogeneous superconducting phase Tc⋆ in respect to the bulk Tc one and proposed a model that explains the Tc⋆>Tc behavior in the series of nonmagnetic skutterudite-related compounds.

4.
Materials (Basel) ; 13(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455689

ABSTRACT

We report on X-ray photoelectron spectroscopy (XPS) and ab initio electronic structure investigations of a novel intermetallic material Ce 9 Ru 4 Ga 5 . The compound crystallizes with a tetragonal unit cell (space group I4 m m ) that contains three inequivalent Ce atoms sites. The Ce 3 d core level XPS spectra indicated an intermediate valence (IV) of selected Ce ions, in line with the previously reported thermodynamic and spectroscopic data. The ab initio calculations revealed that Ce1 ions located at 2 a Wyckoff positions possess stable trivalent configuration, whereas Ce2 ions that occupy 8 d site are intermediate valent. Moreover, for Ce3 ions, located at different 8 d position, a fractional valence was found. The results are discussed in terms of on-site and intersite hybridization effects.

5.
Materials (Basel) ; 12(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795184

ABSTRACT

Structural, electrical, magnetic, and specific heat measurements were carried out on ZnCr2Se4 single crystal and on nanocrystals obtained from the milling of this single crystal after 1, 3, and 5 h, whose crystallite sizes were 25.2, 2.5, and 2 nm, respectively. For this purpose, the high-energy ball-milling method was used. The above studies showed that all samples have a spinel structure, and are p-type semiconductors with less milling time and n-type with a higher one. In turn, the decrease in crystallite size caused a change in the magnetic order, from antiferromagnetic for bulk material and nanocrystals after 1 and 3 h of milling to spin-glass with the freezing temperature Tf = 20 K for the sample after 5 h of milling. The spin-glass behavior for this sample was derived from a broad peak of dc magnetic susceptibility, a splitting of the zero-field-cooling and field-cooling susceptibilities, and from the shift of Tf towards the higher frequency of the ac susceptibility curves. A spectacular result for this sample is also the lack of a peak on the specific heat curve, suggesting a disappearance of the structural transition that is observed for the bulk single crystal.

6.
J Phys Condens Matter ; 25(17): 176002, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23548709

ABSTRACT

In this paper we present experimental results obtained for CePdBi by means of specific heat, electrical resistivity, magnetization and x-ray photoemission spectroscopy (XPS) measurements as well as fully relativistic band structure calculations. CePdBi crystallizes in MgAgAs structure and exhibits a transition to a magnetically ordered state at TM ~/= 2 K, and a subsequent transition to a superconducting state at TC ~/= 1.3 K. The superconducting phase has a significant critical field of about 1.4 T. The x-ray diffraction, resistivity and magnetic susceptibility data show that CePdBi exhibits significant atomic disorder, which is a typical feature of Heusler alloys. It seems that the superconducting transition is caused by part of the disordered phase, which from the Meissner shielding can be estimated to constitute ~8% of the sample volume. Due to atomic disorder, CePdBi exhibits metamagnetic behavior below TM and spin-glass-like features just above TM. Band structure calculations confirm the magnetic ground state of the CePdBi system and the possibility of formation of a narrow pseudogap near the Fermi level, which can also be seen in resistivity data. The spin-orbit interaction strongly influences the band structure and the shape of the semiconducting gap.

7.
J Phys Condens Matter ; 24(9): 095503, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22329993

ABSTRACT

We present a combined theoretical and experimental study of the electronic structure for CeRu(2)Al(10) based on ab initio band structure calculations and x-ray photoemission spectroscopy (XPS) data. Our calculations were performed for the base unit cell and for the hypothetical unit cell which enables antiferromagnetic ordering. The stability of the magnetic phase was investigated within fixed spin moment calculations. When additional 4f correlations are not included in the LSDA C U approach, CeRu(2)Al(10) exhibits an unstable magnetic configuration with the difference in total energy per unit cell between the weakly magnetic state and the non-magnetic one of the order ~0.3 meV. We found that Coulomb correlations among 4f electrons, when they are included in the LSDA C U approach, stabilize the magnetic structure. In the weakly correlated system (small U) an antiferromagnetic (AFM) ground state with the lowest total energy is preferred. The situation is, however, the opposite when the 4f correlations are strong. In this case the ferromagnetic (FM) ground state is preferred. By comparing our calculations with the experimental data we conclude that the 4f correlations in CeRu(2)Al(10) are weak. We also carried out a structural relaxation of atomic positions within the Cmcm unit cell and we found that the Al atoms exhibit noticeable displacement from their positions known from x-ray diffraction (XRD) analysis.


Subject(s)
Aluminum Oxide/chemistry , Cerium/chemistry , Electrons , Magnetics , Ruthenium Compounds/chemistry , Quantum Theory , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...