Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7829, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837262

ABSTRACT

Optomechanical crystal cavities (OMC) have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of OMCs operating under ambient conditions as a sensor of submicrometer particles by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specific modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region. OMCs have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, viruses and bacteria.

2.
Nanoscale ; 10(32): 15402-15409, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30084470

ABSTRACT

While the dispersion of nanomaterials is known to be effective in enhancing the thermal conductivity and specific heat capacity of fluids, the mechanisms behind this enhancement remain to be elucidated. Herein, we report on highly stable, surfactant-free graphene nanofluids, based on N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF), with enhanced thermal properties. An increase of up to 48% in thermal conductivity and 18% in specific heat capacity was measured. The blue shift of several Raman bands with increasing graphene concentration in DMF indicates that there is a modification in the vibrational energy of the bonds associated with these modes, affecting all the molecules in the liquid. This result indicates that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. Density functional theory and molecular dynamics simulations were used to gather data on the interaction between graphene and solvent, and to investigate a possible order induced by graphene on the solvent. The simulations showed a parallel orientation of DMF towards graphene, favoring π-π stacking. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the fluid's thermal properties.

3.
Nano Lett ; 17(12): 7647-7651, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29136385

ABSTRACT

The performance gain-oriented nanostructurization has opened a new pathway for tuning mechanical features of solid matter vital for application and maintained performance. Simultaneously, the mechanical evaluation has been pushed down to dimensions way below 1 µm. To date, the most standard technique to study the mechanical properties of suspended 2D materials is based on nanoindentation experiments. In this work, by means of micro-Brillouin light scattering we determine the mechanical properties, that is, Young modulus and residual stress, of polycrystalline few nanometers thick MoS2 membranes in a simple, contact-less, nondestructive manner. The results show huge elastic softening compared to bulk MoS2, which is correlated with the sample morphology and the residual stress.

4.
Nat Commun ; 8(1): 415, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871197

ABSTRACT

Heat conduction in silicon can be effectively engineered by means of sub-micrometre porous thin free-standing membranes. Tunable thermal properties make these structures good candidates for integrated heat management units such as waste heat recovery, rectification or efficient heat dissipation. However, possible applications require detailed thermal characterisation at high temperatures which, up to now, has been an experimental challenge. In this work we use the contactless two-laser Raman thermometry to study heat dissipation in periodic porous membranes at high temperatures via lattice conduction and air-mediated losses. We find the reduction of the thermal conductivity and its temperature dependence closely correlated with the structure feature size. On the basis of two-phonon Raman spectra, we attribute this behaviour to diffuse (incoherent) phonon-boundary scattering. Furthermore, we investigate and quantify the heat dissipation via natural air-mediated cooling, which can be tuned by engineering the porosity.Nanostructuring of silicon allows acoustic phonon engineering, but the mechanism of related thermal transport in these structures is not fully understood. Here, the authors study the heat dissipation in silicon membranes with periodic nanoholes and show the importance of incoherent scattering.

SELECTION OF CITATIONS
SEARCH DETAIL
...