Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 795: 60-8, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23998538

ABSTRACT

We introduce a novel method for encapsulation of curcumin by synthesizing microcapsule containing self-assembled nanoparticles using poly (L-lysine), trisodium citrate and silica sol. Such microcapsules can only be prepared in neutral and alkaline environment and unencapsulated curcumin can be effectively removed by simple centrifugation with encapsulation efficiency 57.34%. The particle sizes are in the range 0.7-3 µm with an effective diameter 1.05 µm. The structure of the microcapsules is dependent upon the solubility of curcumin in the solvent environment, the microcapsule are spherical when prepared in 10% acetone and bowl-shaped/conical when prepared in water suspension, however, the size of these curcumin encapsulated microcapsules remain similar. Fluorescence microscope images confirm that curcumin is predominantly concentrated within the shell wall of the capsules. Photophysical behavior of Micro-curcumin with respect to curcumin alone is evaluated. Release of curcumin is found to be triggered by pH where acidic environment trigger maximum release compared to basic and neutral conditions. Micro-curcumin is as stable as curcumin. Drug release efficiency is found to be 61.44% and the drug release profile of Micro-curcumin follow Higuchi model. It is also revealed that ß-diketone group of curcumin responsible for scavenging activity is retained in the Micro-curcumin, thus suggesting applicability of such system as a poorly water soluble drug delivery vehicle. In contrast to other curcumin delivery systems, the presented method is easy, fast and does not need flow rate monitoring device. In addition poly (L-lysine) as a non-toxic and highly stable material that prevents metabolic degradation is used in the present preparation method.


Subject(s)
Curcumin/analysis , Drug Delivery Systems/methods , Nanoparticles/chemistry , Polylysine/chemistry , Spectroscopy, Fourier Transform Infrared , Acetone/chemistry , Capsules/chemistry , Curcumin/metabolism , Hydrogen-Ion Concentration , Particle Size , Solubility , Water/chemistry
2.
Phys Chem Chem Phys ; 15(36): 15223-33, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23928658

ABSTRACT

Polyvinylpyrrolidone (PVP)-capped Pt nanoparticles (NPs) were synthesized in mostly tetrahedral (TH-Pt, [edge] = 4.3 ± 0.7 nm) or spherical (S-Pt, [d] = 3.4 ± 0.8 nm) shapes and assembled layer-by-layer in poly(diallyldimethylammonium) chloride on electrodes driven by electrostatic and hydrophobic interactions. The nanostructured Pt electrodes were characterized using hydrogen underpotential deposition (H(upd)) in 1 M H2SO4. The H(upd) charge increased linearly with the PDDA-Pt NP adsorption cycle measured up to 10 cycles revealing a linear incorporation of Pt NPs per cycle, indicative of reproducible surface charge reversal despite the submonolayer NP coverage imaged by TEM on a PDDA layer, and showing the feasibility of charge and mass transport in the thickness of the films. H(upd) at both PVP-TH-Pt and PVP-S-Pt occurred in two states, a major weak-adsorption H(W) peak, and a minor strong-adsorption state H(S) appearing as a shoulder. H(upd) features and other electrochemical processes at assemblies of PVP-Pt NP in PDDA were compared to assemblies of 2.5 nm polyacrylate-capped Pt NPs in PDDA and to polycrystalline Pt. Results indicated that H(W) adsorption likely occurs on a PVP-modified Pt NP surface without being accompanied by PVP desorption, while H(S) occurs on free (100) sites. The PVP-Pt NPs were resistant to surface oxidation and were stable against usual surface restructuring when scanned into the Pt-oxide potential region as they remained modified with PVP. O2 evolution was also suppressed by PVP-capping compared to PAC-Pt NPs and polycryst-Pt, but the assemblies were electrocatalytic for hydrogen evolution, hydrogen oxidation, and oxygen reduction. Increasing anodic polarization increased the H(W) charge but without causing a potential shift, indicating absence of PVP decapping or Pt surface restructuring, but possibly some structural polymer rearrangement increasing the accessibility of buried sites for H-adsorption.


Subject(s)
Electrochemical Techniques , Hydrogen/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Povidone/chemistry , Electrolytes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...