Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 155: 87-98, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24220700

ABSTRACT

Predicting the longevity of non-aqueous phase liquid (NAPL) source zones has proven to be a difficult modeling problem that has yet to be resolved. Research efforts towards understanding NAPL depletion have focused on developing empirical models that relate lumped mass transfer rates to velocities and organic saturations. These empirical models are often unable to predict NAPL dissolution for systems different from those used to calibrate them, indicating that system-specific factors important for dissolution are not considered. This introduces the need for a calibration step before these models can be reliably used to predict NAPL dissolution for systems of arbitrary characteristics. In this paper, five published Sherwood-Gilland models are evaluated using experimental observations from the dissolution of two laboratory-scale complex three-dimensional NAPL source zones. It is shown that the relative behavior of the five models depends on the system and source zone characteristics. Through a theoretical analysis, comparing Sherwood-Gilland type models to a process-based, thermodynamic dissolution model, it is shown that the coefficients of the Sherwood-Gilland models can be related to measurable soil properties. The derived dissolution model with soil-dependent coefficients predicts concentrations identical to those predicted by the thermodynamic dissolution model for cases with negligible hysteresis. This correspondence breaks down when hysteresis has a significant impact on interfacial areas. In such cases, the derived dissolution model will slightly underestimate dissolved concentrations at later times, but is more likely to capture system-specific dissolution rates than Sherwood-Gilland models.


Subject(s)
Environmental Monitoring/methods , Models, Chemical , Soil Pollutants/chemistry , Soil/chemistry , Water Pollutants, Chemical/chemistry , Soil Pollutants/analysis , Thermodynamics , Water Pollutants, Chemical/analysis
2.
J Contam Hydrol ; 110(1-2): 60-71, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19818530

ABSTRACT

The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.


Subject(s)
Carbon Isotopes/analysis , Tetrachloroethylene/analysis , Bacteria/metabolism , Biodegradation, Environmental , Environmental Monitoring , Models, Theoretical , Tetrachloroethylene/chemistry
3.
J Contam Hydrol ; 50(1-2): 21-40, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11475159

ABSTRACT

A soil core, obtained from a contaminated field site, contaminated with a mixture of volatile and semivolatile organic compounds (VOC and SVOC) was subjected to air and steam flushing. Removal rates of volatile and semivolatile organic compounds were monitored during flushing. Air flushing removed a significant portion of the VOC present in the soil, but a significant decline in removal rate occurred due to decreasing VOC concentrations in the soil gas phase. Application of steam flushing after air flushing produced a significant increase in contaminant removal rate for the first 4 to 5 pore volumes of steam condensate. Subsequently, contaminant concentrations decreased slowly with additional pore volumes of steam flushing. The passage of a steam volume corresponding to 11 pore volumes of steam condensate reduced the total VOC concentration in the soil gas (at 20 degrees C) by a factor of 20 to 0.07 mg/l. The corresponding total SVOC concentration in the condensate declined from 11 to 3 mg/l. Declines in contaminant removal rates during both air and steam flushing indicated rate-limited removal consistent with the persistence of a residual organic phase, rate-limited desorption, or channeling. Pressure gradients were much higher for steam flushing than for air flushing. The magnitude of the pressure gradients encountered during steam flushing for this soil indicates that, in addition to rate-limited contaminant removal, the soil permeability (2.1 x 10(-9) cm2) would be a limiting factor in the effectiveness of steam flushing.


Subject(s)
Environmental Pollution/prevention & control , Organic Chemicals , Soil Pollutants/analysis , Water Movements , Air Movements , Permeability , Pressure , Volatilization
4.
Environ Sci Technol ; 35(2): 261-9, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11347596

ABSTRACT

Area 6 at Dover Air Force Base (Dover, DE) has been the location of an in-depth study by the RTDF (Remediation Technologies Development Forum Bioremediation of Chlorinated Solvents Action Team) to evaluate the effectiveness of natural attenuation of chlorinated ethene contamination in groundwater. Compound-specific stable carbon isotope measurements for dissolved PCE and TCE in wells distributed throughout the anaerobic portion of the plume confirm that stable carbon isotope values are isotopically enriched in 13C consistent with the effects of intrinsic biodegradation. During anaerobic microbial reductive dechlorination of chlorinated hydrocarbons, the light (12C) versus heavy isotope (13C) bonds are preferentially degraded, resulting in isotopic enrichment of the residual contaminant in 13C. To our knowledge, this study is the first to provide definitive evidence for reductive dechlorination of chlorinated hydrocarbons at a field site based on the delta13C values of the primary contaminants spilled at the site, PCE and TCE. For TCE, downgradient wells show delta13C values as enriched as -18.0/1000 as compared to delta13C values for TCE in the source zone of -25.0 to -26.0/1000. The most enriched delta13C value on the site was observed at well 236, which also contains the highest concentrations of cis-DCE, VC, and ethene, the daughter products of reductive dechlorination. Stable carbon isotope signatures are used to quantify the relative extent of biodegradation between zones of the contaminant plume. On the basis of this approach, it is estimated that TCE in downgradient well 236 is more than 40% biodegraded relative to TCE in the proposed source area.


Subject(s)
Carbon Isotopes/analysis , Tetrachloroethylene/chemistry , Trichloroethylene/chemistry , Biodegradation, Environmental , Delaware
5.
Environ Sci Technol ; 35(5): 901-7, 2001 Mar 01.
Article in English | MEDLINE | ID: mdl-11351533

ABSTRACT

Stable carbon isotopic analysis has the potential to assess biodegradation of chlorinated ethenes. Significant isotopic shifts, which can be described by Rayleigh enrichment factors, have been observed for the biodegradation of trichloroethlyene (TCE), cis-dichloroethylene (cDCE), and vinyl chloride (VC). However, until this time, no systematic investigation of isotopic fractionation during perchloroethylene (PCE) degradation has been undertaken. In addition, there has been no comparison of isotopic fractionation by different microbial consortia, nor has there been a comparison of isotopic fractionation by consortia generated from the same source, but growing under different conditions. This study characterized carbon isotopic fractionation during reductive dechlorination of the chlorinated ethenes, PCE in particular, for microbial consortia from two different sources growing under different environmental conditions in order to assess the extent to which different microbial consortia result in different fractionation factors. Rayleigh enrichment factors of -13.8@1000, -20.4@1000, and -22.4@1000 were observed for TCE, cDCE, and VC, respectively, for dechlorination by the KB-1 consortium. In contrast, isotopic fractionation during reductive dechlorination of perchloroethylene (PCE) could not always be approximated by a Rayleigh model. Dechlorination by one consortium followed Rayleigh behavior (epsilon = -5.2), while a systematic change in the enrichment factor was observed over the course of PCE degradation by two other consortia. Comparison of all reported enrichment factors for reductive dechlorination of the chlorinated ethenes shows significant variation between experiments. Despite this variability, these results demonstrate that carbon isotopic analysis can provide qualitative evidence of the occurrence and relative extent of microbial reductive dechlorination of the chlorinated ethenes.


Subject(s)
Carbon Isotopes/chemistry , Carcinogens/pharmacokinetics , Dichloroethylenes/pharmacokinetics , Solvents/pharmacokinetics , Trichloroethylene/pharmacokinetics , Vinyl Chloride/pharmacokinetics , Biodegradation, Environmental , Chlorine/chemistry , Environmental Monitoring , Soil Microbiology
6.
Anal Chem ; 72(22): 5669-72, 2000 Nov 15.
Article in English | MEDLINE | ID: mdl-11101247

ABSTRACT

To accurately interpret isotopic data obtained for volatile organic compounds (VOCs) dissolved in groundwater systems, the isotopic effects of subsurface processes must be understood. Previous work has demonstrated that volatilization and dissolution of BTEX and chlorinated ethene compounds are not significantly isotopically fractionating. This study characterized the carbon isotopic effects of equilibrium sorption of perchloroethylene, trichloroethylene, benzene, and toluene to both graphite and activated carbon directly in batch experiments over a range of 10-90% sorption. Results demonstrate that, over this range, equilibrium sorption of these VOCs to graphite and activated carbon does not result in significant carbon isotopic fractionation within the +/-0.5% accuracy and reproducibility associated with compound-specific isotope analysis. This implies that the isotopic values of dissolved VOCs will not be significantly affected by equilibrium sorption in the subsurface. Therefore, isotopic analysis has potential to be used in the field to differentiate between mass losses due to isotopically fractionating processes such as biodegradation versus mass loss due to nondegradative processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...