Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 17(6): 889-95, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22071222

ABSTRACT

The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 µm apart.


Subject(s)
Micromanipulation/methods , Nanotechnology/methods , Nanowires/analysis , Silicon/analysis , Specimen Handling/methods , Electrons , Ions , Microscopy, Electron, Transmission/instrumentation , Nanowires/ultrastructure , Semiconductors
2.
Nano Lett ; 8(6): 1566-71, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18444687

ABSTRACT

We report the first direct capacitance measurements of silicon nanowires (SiNWs) and the consequent determination of field carrier mobilities in undoped-channel SiNW field-effect transistors (FETs) at room temperature. We employ a two-FET method for accurate extraction of the intrinsic channel resistance and intrinsic channel capacitance of the SiNWs. The devices used in this study were fabricated using a top-down method to create SiNW FETs with up to 1000 wires in parallel for increasing the raw capacitance while maintaining excellent control on device dimensions and series resistance. We found that, compared with the universal mobility curves for bulk silicon, the electron and hole mobilities in nanowires are comparable to those of the surface orientation that offers a lower mobility.


Subject(s)
Crystallization/methods , Models, Chemical , Nanostructures/chemistry , Nanotechnology/methods , Silicon/chemistry , Transistors, Electronic , Computer Simulation , Electron Transport , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanostructures/ultrastructure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...