Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17048, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813914

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains. Then, each subject is categorized as having severe, moderate, or mild ASD, or typical neurodevelopment (TD), based on the behavioral domains of the Social Responsiveness Scale (SRS). Through this study, multiple artificial intelligence (AI) models are utilized for feature selection and classifying each ASD severity and behavioural group. A multivariate feature selection algorithm, investigating four different classifiers with linear and non-linear hypotheses, is applied iteratively while shuffling the training-validation subjects to find the set of cortical regions with statistically significant association with ASD. A set of six classifiers are optimized and trained on the selected set of features using 5-fold cross-validation for the purpose of severity classification for each behavioural group. Our AI-based model achieved an average accuracy of 96%, computed as the mean accuracy across the top-performing AI models for feature selection and severity classification across the different behavioral groups. The proposed AI model has the ability to accurately differentiate between the functionalities of specific brain regions, such as the left and right caudal middle frontal regions. We propose an AI-based model that dissects ASD into behavioral components. For each behavioral component, the AI-based model is capable of identifying the brain regions which are associated with ASD as well as utilizing those regions for diagnosis. The proposed system can increase the speed and accuracy of the diagnostic process and result in improved outcomes for individuals with ASD, highlighting the potential of AI in this area.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Artificial Intelligence , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Machine Learning
2.
Med Phys ; 48(4): 1584-1595, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33450073

ABSTRACT

PURPOSE: Accurate segmentation of retinal layers of the eye in 3D Optical Coherence Tomography (OCT) data provides relevant information for clinical diagnosis. This manuscript describes a 3D segmentation approach that uses an adaptive patient-specific retinal atlas, as well as an appearance model for 3D OCT data. METHODS: To reconstruct the atlas of 3D retinal scan, the central area of the macula (macula mid-area) where the fovea could be clearly identified, was segmented initially. Markov Gibbs Random Field (MGRF) including intensity, spatial information, and shape of 12 retinal layers were used to segment the selected area of retinal fovea. A set of coregistered OCT scans that were gathered from 200 different individuals were used to build a 2D shape prior. This shape prior was adapted subsequently to the first order appearance and second order spatial interaction MGRF model. After segmenting the center of the macula "foveal area", the labels and appearances of the layers that were segmented were utilized to segment the adjacent slices. The final step was repeated recursively until a 3D OCT scan of the patient was segmented. RESULTS: This approach was tested in 50 patients with normal and with ocular pathological conditions. The segmentation was compared to a manually segmented ground truth. The results were verified by clinical retinal experts. Dice Similarity Coefficient (DSC), 95% bidirectional modified Hausdorff Distance (HD), Unsigned Mean Surface Position Error (MSPE), and Average Volume Difference (AVD) metrics were used to quantify the performance of the proposed approach. The proposed approach was proved to be more accurate than the current state-of-the-art 3D OCT approaches. CONCLUSIONS: The proposed approach has the advantage of segmenting all the 12 retinal layers rapidly and more accurately than current state-of-the-art 3D OCT approaches.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Retina/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...