Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Microgravity ; 9(1): 43, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308480

ABSTRACT

Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 "ESA SciSpacE Science Community White Paper" for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system.

2.
Biofabrication ; 12(4): 043001, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32975214

ABSTRACT

Fifty years after the first human landed on the Moon mankind has started to plan next steps for manned space exploration missions. The international space agencies have begun to investigate the requirements for both a human settlement on the Moon and manned missions to Mars. For such activities significantly improved medical treatment facilities on-board the spacecrafts or within the extraterrestrial settlements need to be provided as no fast return opportunities to Earth would exist anymore in case of severe trauma or illness. Bioprinting is believed to play a significant role as it could offer the possibilities to produce patient-specific tissue constructs in a semi-automated manner. Therefore, both the space agencies and the bioprinting community have started to study possible applications of bioprinting technologies in space. Besides utilisation of bioprinted tissue constructs for the treatment of injured astronauts bioprinting will become relevant for the fabrication of three-dimensional tissue models for basic research, e.g. concerning effects of microgravity and cosmic radiation on cells and tissues. This perspective article describes the current state of the art including medical scenarios for new far-distant space exploration missions, first approaches towards establishment of bioprinters in space and which limitations have to be resolved to use bioprinting under the specific conditions of space flight like altered gravity conditions.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Space Flight , Astronauts , Humans , Mars , Moon , Spacecraft
3.
Adv Biochem Eng Biotechnol ; 153: 143-84, 2016.
Article in English | MEDLINE | ID: mdl-26206570

ABSTRACT

Life support systems for long-term space missions or extraterrestrial installations have to fulfill major functions such as purification of water and regeneration of atmosphere as well as the generation of food and energy. For almost 60 years ideas for biological life support systems have been collected and various concepts have been developed and tested. Microalgae as photosynthetic organisms have played a major role in most of these concepts. This review deals with the potentials of using eukaryotic microalgae for life support systems and highlights special requirements and frame conditions for designing space photobioreactors especially regarding illumination and aeration. Mono- and dichromatic illumination based on LEDs is a promising alternative for conventional systems and preliminary results yielded higher photoconversion efficiencies (PCE) for dichromatic red/blue illumination than white illumination. Aeration for microgravity conditions should be realized in a bubble-free manner, for example, via membranes. Finally, a novel photobioreactor concept for space application is introduced being parameterized and tested with the microalga Chlamydomonas reinhardtii. This system has already been tested during two parabolic flight campaigns.


Subject(s)
Batch Cell Culture Techniques/instrumentation , Chlamydomonas reinhardtii/growth & development , Life Support Systems/instrumentation , Photobioreactors/microbiology , Space Flight/instrumentation , Weightlessness , Cell Proliferation/physiology , Cell Proliferation/radiation effects , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/radiation effects , Equipment Design , Equipment Failure Analysis , Light , Lighting/instrumentation
4.
Astrobiology ; 13(8): 679-92, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23919751

ABSTRACT

The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due to dust particles, inflammation, stress, low gravity and microgravity, radiation, UV, and so on may consequently change the effects of the dust and aggravate neurological consequences.


Subject(s)
Brain/drug effects , Dust , Mars , Moon , Neurotoxins/toxicity , Synapses/drug effects , Acridine Orange , Animals , Brain/metabolism , Carbon Radioisotopes , Fluorescent Dyes , Glutamic Acid/metabolism , In Vitro Techniques , Male , Membrane Potentials/drug effects , Rats , Rats, Wistar , Rhodamines , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...