Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854111

ABSTRACT

Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100µM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3ß, demonstrating that GSK3ß-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.

2.
Metallomics ; 15(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36737500

ABSTRACT

Synchrotron X-ray fluorescence microscopy (SXRF) presents a valuable opportunity to study the metallome of single cells because it simultaneously provides high-resolution subcellular distribution and quantitative cellular content of multiple elements. Different sample preparation techniques have been used to preserve cells for observations with SXRF, with a goal to maintain fidelity of the cellular metallome. In this case study, mouse pancreatic beta-cells have been preserved with optimized chemical fixation. We show that cell-to-cell variability is normal in the metallome of beta-cells due to heterogeneity and should be considered when interpreting SXRF data. In addition, we determined the impact of several immunofluorescence (IF) protocols on metal distribution and quantification in chemically fixed beta-cells and found that the metallome of beta-cells was not well preserved for quantitative analysis. However, zinc and iron qualitative analysis could be performed after IF with certain limitations. To help minimize metal loss using samples that require IF, we describe a novel IF protocol that can be used with chemically fixed cells after the completion of SXRF.


Subject(s)
Metals , Synchrotrons , Animals , Mice , X-Rays , Spectrometry, X-Ray Emission/methods , Metals/analysis , Iron/analysis
3.
Metallomics ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34402906

ABSTRACT

Pancreatic beta-cells synthesize and secrete insulin maintaining an organism's energy homeostasis. In humans, beta-cell dysfunction and death contribute to the pathogenesis of type 2 diabetes (T2D). Although the causes of beta-cell dysfunction are complex, obesity-induced low-grade systemic inflammation plays a role. For example, obese individuals exhibiting increased levels of proinflammatory cytokines IL-6 and IL-1beta have a higher risk of beta-cell dysfunction and T2D. Interestingly, obesity-induced inflammation changes the expression of several cellular metal regulating genes, prompting this study to examine changes in the beta-cell metallome after exposure to proinflammatory-cytokines. Primary mouse beta-cells were exposed to a combination of IL-6 and IL-1beta for 48 hours, were chemically fixed and imaged by synchrotron X-ray fluorescent microscopy. Quantitative analysis showed a surprising 2.4-fold decrease in the mean total cellular content of zinc from 158 ± 57.7 femtograms (fg) to 65.7 ± 29.7 fg; calcium decreased from 216 ± 67.4 to 154.3 ± 68.7 fg (control vs. cytokines, respectively). The mean total cellular iron content slightly increased from 30.4 ± 12.2 to 47.2 ± 36.4 fg after cytokine treatment; a sub-population of cells (38%) exhibited larger increases of iron density. Changes in the subcellular distributions of zinc and calcium were observed after cytokine exposure. Beta-cells contained numerous iron puncta that accumulated still more iron after exposure to cytokines. These findings provide evidence that exposure to low levels of cytokines is sufficient to cause changes in the total cellular content and/or subcellular distribution of several metals known to be critical for normal beta-cell function.


Subject(s)
Calcium/metabolism , Inflammation/metabolism , Insulin-Secreting Cells/metabolism , Iron/metabolism , Optical Imaging/methods , Synchrotrons , Zinc/metabolism , Animals , Inflammation Mediators/pharmacology , Insulin-Secreting Cells/drug effects , Interleukin-1beta/pharmacology , Interleukin-6/pharmacology , Male , Mice , Subcellular Fractions/metabolism
4.
Am J Physiol Endocrinol Metab ; 320(6): E1158-E1172, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33938235

ABSTRACT

In the endocrine pancreas, growth hormone (GH) is known to promote pancreatic islet growth and insulin secretion. In this study, we show that GH receptor (GHR) loss in the germline and in adulthood impacts islet mass in general but more profoundly in male mice. GHR knockout (GHRKO) mice have enhanced insulin sensitivity and low circulating insulin. We show that the total cross-sectional area of isolated islets (estimated islet mass) was reduced by 72% in male but by only 29% in female GHRKO mice compared with wild-type controls. Also, islets from GHRKO mice secreted ∼50% less glucose-stimulated insulin compared with size-matched islets from wild-type mice. We next used mice with a floxed Ghr gene to knock down the GHR in adult mice at 6 mo of age (6mGHRKO) and examined the impact on glucose and islet metabolism. By 12 mo of age, female 6mGHRKO mice had increased body fat and reduced islet mass but had no change in glucose tolerance or insulin sensitivity. However, male 6mGHRKO mice had nearly twice as much body fat, substantially reduced islet mass, and enhanced insulin sensitivity, but no change in glucose tolerance. Despite large losses in islet mass, glucose-stimulated insulin secretion from isolated islets was not significantly different between male 6mGHRKO and controls, whereas isolated islets from female 6mGHRKO mice showed increased glucose-stimulated insulin release. Our findings demonstrate the importance of GH to islet mass throughout life and that unique sex-specific adaptations to the loss of GH signaling allow mice to maintain normal glucose metabolism.NEW & NOTEWORTHY Growth hormone (GH) is important for more than just growth. GH helps to maintain pancreatic islet mass and insulin secretion throughout life. Sex-specific adaptations to the loss of GH signaling allow mice to maintain normal glucose regulation despite losing islet mass.


Subject(s)
Germ Cells/metabolism , Growth Hormone/deficiency , Islets of Langerhans/growth & development , Islets of Langerhans/physiology , Receptors, Somatotropin/genetics , Age Factors , Animals , Cell Proliferation/genetics , Female , Germ Cells/physiology , Growth Hormone/genetics , Growth Hormone/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Size/genetics , Receptors, Somatotropin/deficiency , Receptors, Somatotropin/metabolism , Sex Characteristics , Signal Transduction/genetics
5.
J Endocrinol ; 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30870813

ABSTRACT

Glucose-stimulated insulin secretion (GSIS) is a well-accepted method to investigate the physiological and pathophysiological function of islets. However, there is little consensus about which method is best for normalizing and presenting GSIS data. In this study, we evaluated the sufficiency of islet area, total protein, total DNA, and total insulin content as parameters to normalize GSIS data. First, we tested if there is a linear correlation between each parameter and the number of islets (10, 20, 30, and 40 islets). Islet area, total protein, and insulin content produced excellent linear correlations with islet number (R2 >0.9 for each) from the same islet material. Insulin secretion in 11mM glucose also correlated reasonably well for islet area (R2=0.69), protein (R2=0.49), and insulin content (R2=0.58). DNA content was difficult to reliably measure and was excluded from additional comparisons. We next measured GSIS for 18 replicates of 20 islets each, measuring 3mM and 11mM glucose to calculate the stimulation index and to compare each normalization parameter. Using these similar islet masses for each replicate, none of the parameters produced linear correlations with GSIS (R2<0.05), suggesting that inherent differences in GSIS dominate small differences in islet mass. We conclude that when comparing GSIS for islets of reasonably similar size (<50% variance), normalization does not improve the representation of GSIS data. Normalization may be beneficial when substantial differences in islet mass are involved. In such situations, we suggest that using islet cross-sectional area is superior to other commonly used techniques for normalizing GSIS data.

6.
Cell Signal ; 44: 148-157, 2018 04.
Article in English | MEDLINE | ID: mdl-29414441

ABSTRACT

Protein kinase C delta (PKCδ) is a Ser/Thr-specific kinase involved in many fundamental cellular processes including growth, differentiation and apoptosis. PKCδ is expressed ubiquitously in all known cell types, and can be activated by diacylglycerol, phorbol esters and other kinases. Multiple lines of evidence have indicated that the mode of activation greatly influences the role PKCδ plays in cellular function. Divalent metal ions, such as zinc are released as a response to cellular stress and injury, often resulting in oxidative damage and cell death. In this study, we evaluate the effect increased concentrations of intracellular zinc has on the phosphorylation state and subcellular localization of PKCδ. More specifically, we demonstrate that intracellular zinc inhibits the phosphorylation of PKCδ at Thr505 in a concentration-dependent manner and facilitates the translocation of PKCδ from the cytosol to the Golgi complex. Analysis of a PKCδ structural model revealed a potential His-Cys3 zinc-binding domain adjacent to residue Thr505 and suggests that interaction with a Zn2+ ion may preclude phosphorylation at this site. This study establishes zinc as a potent modulator of PKCδ function and suggests a novel mechanism by which PKCδ is able to "sense" changes in the concentration of intracellular zinc. These findings illuminate a new paradigm of metal ion-protein interaction that may have significant implications on a broad spectrum of cellular processes.


Subject(s)
Protein Kinase C-delta/metabolism , Zinc/metabolism , Cytosol/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Phosphorylation
7.
Am J Physiol Cell Physiol ; 313(4): C448-C459, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28747335

ABSTRACT

Both zinc (Zn2+) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn2+ rise was a transient, which was followed by a latent phase during which Zn2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn2+ rise, which reached a sustained plateau called Zn2+ overload. Zn2+ rises were not observed when Zn2+ was removed by TPEN (a Zn2+ chelator) or thapsigargin (depleting Zn2+ from intracellular stores) treatment, indicating that Zn2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn2+ rise, indicating that the mitochondrial Zn2+ accumulation contributes to Zn2+ overload. We also detected two OGD-induced ROS rises. Two Zn2+ rises preceded two ROS rises. Removal of Zn2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn2+ contributes to mitochondrial ROS generation. There was a Zn2+-induced increase in the functional component of NADPH oxidase, p47phox, thus suggesting that NADPH oxidase may mediate Zn2+-induced ROS accumulation. We suggest a new mechanism of cross talk between Zn2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn2+ and ROS accumulations during the course of ischemic stress.


Subject(s)
Brain Ischemia/metabolism , Brain/metabolism , Glucose/deficiency , Mitochondria/metabolism , Oxidative Stress , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Zinc/metabolism , Animals , Brain/drug effects , Brain/pathology , Brain Ischemia/pathology , Cell Hypoxia , Chelating Agents/pharmacology , Feedback, Physiological , HeLa Cells , Humans , In Vitro Techniques , Male , Mitochondria/drug effects , Mitochondria/pathology , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Proton Ionophores/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Time Factors
8.
Article in English | MEDLINE | ID: mdl-27186321

ABSTRACT

Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

9.
Article in English | MEDLINE | ID: mdl-27186322

ABSTRACT

Mitochondrial reactive oxygen species (ROS) are known to accumulate during chemical hypoxia, causing adverse effects on cell function and survival. Recent studies show important role zinc accumulation plays in dysfunction associated with hypoxia. It is well known that ROS accumulation also plays a major role in cellular damage by hypoxia. In this study, fluorescent imaging and pharmacological methods were used in live HeLa cells to determine role of zinc in initial ROS accumulation in mitochondria during chemical hypoxia (oxygen glucose depravation with 4 mM sodium dithionite). Accumulation of both was observed as a very rapid phenomenon with initial rapid zinc increase (zinc wave) within 60 seconds of hypoxia onset and ROS increase within 4.5 minutes. Zinc chelation with TPEN removed the initial zinc wave which in turn abolished ROS accumulation. Influx of exogenous zinc induced rapid ROS accumulation. Inhibition of NADPH oxidase with apocynin, a NADPH oxidase inhibitor, showed significant and prolonged reduction in zinc induced ROS accumulation. We proposed a novel mechanism of intracellular zinc increase that activates NADPH oxidase which in turn triggers mitochondrial ROS production.

10.
Endocrine ; 50(1): 110-22, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25771886

ABSTRACT

It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (ß)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from ß-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.


Subject(s)
Autocrine Communication/physiology , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Zinc/metabolism , Animals , Cations, Divalent , Cells, Cultured , Female , Insulin Secretion , Mice , Mice, Inbred C57BL
11.
Exp Physiol ; 98(8): 1301-11, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23603373

ABSTRACT

Diminished or inappropriate secretion of insulin is associated with type II diabetes. The cellular/molecular mechanism coupled with the regulation of insulin secretion is still under intense investigation. Divalent ion zinc (Zn(2+)) is co-packaged and co-secreted with insulin and is intimately involved in the process of insulin biosynthesis and the maturation of insulin secretory granules. The study reported here investigated glucose-stimulated zinc secretion (GSZS) and the effect of zinc on glucose-stimulated insulin secretion (GSIS) in the HIT-T15 pancreatic ß-cell line. Zinc secretion was measured using a newly developed fluorescent zinc imaging approach, and the insulin secretion was measured using an enzyme-linked immunosorbent assay. There was apparent granular-like zinc staining in ß-cells. The application of glucose induced detectable zinc secretion or GSZS. Like GSIS, GSZS was dependent on the glucose concentration (5-20 mm) and the presence of extracellular calcium. The application of a zinc chelator enhanced GSZS. When brief paired-pulse glucose stimulations, which involve the initial glucose stimulation followed by a second round of glucose stimulation, were applied, zinc secretion or GSZS that followed the first pulse was inhibited. This inhibition was reversed by zinc chelation, suggesting a feedback mechanism on GSZS by zinc secreted from ß-cells. Finally, the application of zinc (50 µm) strongly inhibited GSIS as measured by enzyme-linked immunosorbent assay. The present study suggests that insulin secretion is regulated by co-secreted zinc that may act as an autocrine inhibitory modulator.


Subject(s)
Glucose/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Insulin/metabolism , Zinc/metabolism , Zinc/pharmacology , Animals , Calcium/metabolism , Cell Line , Insulin-Secreting Cells/metabolism , Secretory Vesicles/drug effects , Secretory Vesicles/metabolism , Secretory Vesicles/physiology
12.
Exp Diabetes Res ; 2012: 190309, 2012.
Article in English | MEDLINE | ID: mdl-22536213

ABSTRACT

Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.


Subject(s)
Glucose/metabolism , Homeostasis/physiology , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Membrane Potentials/physiology , Zinc/metabolism , Animals , Cell Line , Cells, Cultured , Cricetinae , Glucose/pharmacology , Homeostasis/drug effects , Insulin Secretion , Insulin-Secreting Cells/drug effects , Membrane Potentials/drug effects , Mesocricetus
13.
Biochem J ; 422(3): 513-20, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19558366

ABSTRACT

In adult non-replicating tissues such as heart, demand for dNTPs (deoxynucleoside triphosphates) is low but essential for mitochondrial DNA replication and nuclear DNA repair. dNTPs may be synthesized from salvage of deoxyribonucleosides or by reduction of ribonucleotides. We have hypothesized that the cardiac mitochondrial toxicity of the nucleoside analogue AZT (3'-azido-3'-deoxythymidine; known as zidovudine) is caused by inhibition of thymidine kinase 2 of the salvage pathway and subsequent TTP pool depletion. The extent to which this hypothesis has merit depends on how much the heart relies on thymidine phosphorylation for maintenance of the TTP pool. In the present study, we used isotopic tracing to demonstrate that both TTP and dCTP are solely synthesized by phosphorylation of thymidine and deoxycytidine respectively, with no evidence for synthesis from other precursors. We have also shown that UTP and CTP are synthesized by phosphorylation of uridine and cytidine respectively, with no detectable role for the de novo pyrimidine synthesis pathway. Lastly, we have demonstrated that AZT decreased the TTP pool by 50% in 30 min of perfusion, while having no effect on other dNTPs. In summary, the present study demonstrated that adult rat heart has a limited mechanism for dCTP and TTP synthesis and thus these pools may be more sensitive than replicating cells to drugs such as AZT that affect the salvage pathway.


Subject(s)
Heart/drug effects , Perfusion , Pyrimidine Nucleotides/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Zidovudine/pharmacology , Animals , Chromatography, High Pressure Liquid , Cytidine/metabolism , Cytidine Triphosphate/metabolism , Deoxyadenine Nucleotides/metabolism , Deoxycytidine/metabolism , Deoxycytosine Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Deoxyuridine/metabolism , In Vitro Techniques , Male , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/toxicity , Thymine Nucleotides/metabolism , Uracil/metabolism , Uridine/metabolism , Uridine Monophosphate/metabolism , Uridine Triphosphate/metabolism , Zidovudine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...