Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(5): 1239-1247, 2023 03.
Article in English | MEDLINE | ID: mdl-36268673

ABSTRACT

Changes in soil organic carbon (SOC) storage have the potential to affect global climate; hence identifying environments with a high capacity to gain or lose SOC is of broad interest. Many cross-site studies have found that SOC-poor soils tend to gain or retain carbon more readily than SOC-rich soils. While this pattern may partly reflect reality, here we argue that it can also be created by a pair of statistical artifacts. First, soils that appear SOC-poor purely due to random variation will tend to yield more moderate SOC estimates upon resampling and hence will appear to accrue or retain more SOC than SOC-rich soils. This phenomenon is an example of regression to the mean. Second, normalized metrics of SOC change-such as relative rates and response ratios-will by definition show larger changes in SOC at lower initial SOC levels, even when the absolute change in SOC does not depend on initial SOC. These two artifacts create an exaggerated impression that initial SOC stocks are a major control on SOC dynamics. To address this problem, we recommend applying statistical corrections to eliminate the effect of regression to the mean, and avoiding normalized metrics when testing relationships between SOC change and initial SOC. Careful consideration of these issues in future cross-site studies will support clearer scientific inference that can better inform environmental management.


Subject(s)
Carbon , Soil , Artifacts , Climate
2.
New Phytol ; 231(6): 2162-2173, 2021 09.
Article in English | MEDLINE | ID: mdl-33662154

ABSTRACT

Organic nitrogen (N) is abundant in soils, but early conceptual frameworks considered it nonessential for plant growth. It is now well recognised that plants have the potential to take up organic N. However, it is still unclear whether plants supplement their N requirements by taking up organic N in situ: at what rate is organic N diffusing towards roots and are plants taking it up? We combined microdialysis with live-root uptake experiments to measure amino acid speciation and diffusion rates towards roots of Eriophorum vaginatum. Amino acid diffusion rates (321 ng N cm-2  h-1 ) were c. 3× higher than those for inorganic N. Positively charged amino acids made up 68% of the N diffusing through soils compared with neutral and negatively charged amino acids. Live-root uptake experiments confirmed that amino acids are taken up by plants (up to 1 µg N g-1  min-1 potential net uptake). Amino acids must be considered when forecasting plant-available N, especially when they dominate the N supply, and when acidity favours proteolysis over net N mineralisation. Determining amino acid production pathways and supply rates will become increasingly important in projecting the extent and consequences of shrub expansion, especially considering the higher C : N ratio of plants relative to soil.


Subject(s)
Cyperaceae , Soil , Amino Acids , Nitrogen/analysis , Tundra
3.
Ecology ; 99(10): 2348-2362, 2018 10.
Article in English | MEDLINE | ID: mdl-30047578

ABSTRACT

Soil moisture controls microbial activity and soil carbon cycling. Because microbial activity decreases as soils dry, decomposition of soil organic matter (SOM) is thought to decrease with increasing drought length. Yet, microbial biomass and a pool of water-extractable organic carbon (WEOC) can increase as soils dry, perhaps implying microbes may continue to break down SOM even if drought stressed. Here, we test the hypothesis that WEOC increases as soils dry because exoenzymes continue to break down litter, while their products accumulate because they cannot diffuse to microbes. To test this hypothesis, we manipulated field plots by cutting off litter inputs and by irrigating and excluding precipitation inputs to extend or shorten the length of the dry season. We expected that the longer the soils would remain dry, the more WEOC would accumulate in the presence of litter, whereas shortening the length of the dry season, or cutting off litter inputs, would reduce WEOC accumulation. Lastly, we incubated grass roots in the laboratory and measured the concentration of reducing sugars and potential hydrolytic enzyme activities, strictly to understand the mechanisms whereby exoenzymes break down litter over the dry season. As expected, extending dry season length increased WEOC concentrations by 30% above the 108 µg C/g measured in untreated plots, whereas keeping soils moist prevented WEOC from accumulating. Contrary to our hypothesis, excluding plant litter inputs actually increased WEOC concentrations by 40% above the 105 µg C/g measured in plots with plants. Reducing sugars did not accumulate in dry senesced roots in our laboratory incubation. Potential rates of reducing sugar production by hydrolytic enzymes ranged from 0.7 to 10 µmol·g-1 ·h-1 and far exceeded the rates of reducing sugar accumulation (~0.001 µmol·g-1 ·h-1 ). Our observations do not support the hypothesis that exoenzymes continue to break down litter to produce WEOC in dry soils. Instead, we develop the argument that physical processes are more likely to govern short-term WEOC dynamics via slaking of microaggregates that stabilize SOM and through WEOC redistribution when soils wet up, as well as through less understood effects of drought on the soil mineral matrix.


Subject(s)
Carbon , Soil , Biomass , Carbon Cycle , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...