Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 178: 108722, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38889628

ABSTRACT

The timely psychological stress detection can improve the quality of human life by preventing stress-induced behavioral and pathological consequences. This paper presents a novel framework that eliminates the need of Electrocardiography (ECG) signals-based referencing of Phonocardiography (PCG) signals for psychological stress detection. This stand-alone PCG-based methodology uses wavelet scattering approach on the data acquired from twenty-eight healthy adult male and female subjects to detect psychological stress. The acquired PCG signals are asynchronously segmented for the analysis using wavelet scattering transform. After the noise bands removal, the optimized segmentation length (L), scattering network parameters namely-invariance scale (J) and quality factor (Q) are utilized for computation of scattering features. These scattering coefficients generated are fed to K-nearest neighbor (KNN) and Extreme Gradient Boosting (XGBoost) classifier and the ten-fold cross validation-based performance metrics obtained are-accuracy 94.30 %, sensitivity 97.96 %, specificity 88.01 % and area under the curve (AUC) 0.9298 using XGBoost classifier for detecting psychological stress. Most importantly, the framework also identified two frequency bands in PCG signals with high discriminatory power for psychological stress detection as 270-290 Hz and 380-390 Hz. The elimination of multi-modal data acquisition and analysis makes this approach cost-efficient and reduces computational complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...